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Introduction 
 

 

The reason for writing this new book is to provide a new learning opportunity for many users who are 
learning coding from scratch with 'neo-Arduino robot car'. At some point, I started to feel the limitations 
of coding education with just C language, and Python coding was gaining great popularity among the 
public. Furthermore, I believed there was a significant need to advance to C++ language, using the 
already in-use 'neo-Arduino robot car' to enhance coding skills up to an intermediate level of C++ as a 
means and motivation. 
 
While preparing to launch a new product that combines Micro:bit and Arduino, which allows for Python 
language use, the intention was to provide a 'new weapon for coding education' that could elevate the 
level of education that had been lacking with just C language coding, for existing product users. 
 
The expected readers are, of course, customers using the 'neo-Arduino robot car', and possibly those 
interested in the new products being launched by our company. However, even those who do not 
purchase the Arduino robot product can easily understand C++ coding language by reading this freely 
distributed book. 
 
The origin and background of this book are based on the online distribution version of the coding robot 
from Parallax Inc. in the USA, which is the origin of 'neo-Arduino robot car'. The first and second parts 
of the 'Playing with Arduino Robot' online practical material distributed long ago by our company were 
translations based on the content from Parallax Inc. Additionally, various summaries, explanations, and 
example code development in this book were assisted by ChatGPT, and many illustrations used images 
from Dall-E. 
 
This book aims not to duplicate but creatively maintain relevance with the content of previously 
distributed online practical materials. ChatGPT has been an undoubtedly excellent collaborator and a 
powerful producer. We hope that many customers who will benefit from reading this book will always 
communicate with ChatGPT and achieve great success. 
 
We look forward to meeting you again with Fribot's new products in the near future and believe it won't 
be long before that happens. May the glory of God be with everyone. 
 
 
 
 
 

by chung wookjin 
 
 
  



***  For teachers teaching C and C++ languages with this book  *** 
 
 
 
 
This book is structured into 9 chapters. The content covered in this book may be insufficient for students 
who are completely new to the C language, as the basics of C language syntax and usage are 
intentionally omitted. For students who have no experience with C language, it is recommended to first 
learn the basics of handling 'neo-Arduino robot car' with C language and its basic grammar before using 
this book. 
 
C and C++ languages, while similar, require a completely new concept and approach for C++ language, 
so it is recommended to first experience the basic grammar of C language before using this book. The 
core of the C++ content in this book is to learn the concept of classes through robot actions. Therefore, 
it intentionally does not cover C++ style I/O streams, namespace concepts, variable types and lifespans, 
especially modifiers and qualifiers, and the enhanced for loop in C++. 
 
Here is a summary of the content covered in each chapter: 
 
Chapter 1 - Understanding the SelfAbot Class: Introduces what C++ object-oriented programming is 
and uses Arduino examples to familiarize with the class concept. It introduces and explains the 
'SelfAbot' class library code to be applied to the Arduino robot. This chapter focuses more on explaining 
the concept than on practice, so if students find it boring, it can be covered slowly at the end. The 
'SelfAbot' class will continue to be explained in subsequent chapters. 
 
Chapter 2 - Arduino Functions and Function Overloading: Describes and practices the use of class 
concepts in Arduino examples and the use of function overloading. 
 
Chapter 3 - Robot Initialization and Basic Action Methods: Codes and practices the actions of the 
Arduino robot using the class concept. This is a practice of acquiring basic actions of the Arduino robot 
in the same way as mentioned in the first part of the 'Playing with Arduino Robot' online practical material 
distributed long ago. 
 
Chapter 4 - Controlling the Movement of the Arduino Robot: Practices new driving actions of the Arduino 
robot from the previous chapters. Experience how to easily extend the robot's actions with the class 
concept. A practice of learning a more delicate and diverse moving Arduino robot. 
 
Chapter 5 - Photo Transistor Sensor Light Signal Method: rcTime(): Introduces and practices the class 
method for handling light sensors. It's time to learn the expansion concept of handling sensor signals in 
various ways while using the same light sensor. 
 
Chapter 6 - Autonomous Driving Robot with Infrared Sensor: You may have already tried driving 
practices with an infrared sensor. This chapter provides a practice experience of using infrared signals 
more diversely for different purposes. 
 
Chapter 7 - Arduino Robot Equipped with Ultrasonic Sensor: Practices how ultrasonic sensors are 
integrated and used differently from infrared transceiver sensors on robots. It makes the robot's 
autonomous driving more intelligent with an ultrasonic sensor. 
 
Chapter 8 - Creating Specialized Robots with Class Inheritance: A practice to convey the concept of 
inheritance in C++ class concepts to students. It creates a subclass with all the methods introduced in 
the previous chapters (practice examples) that are not included in the 'SelfAbot' basic class (superclass 
or parent class) and practices the class inheritance concept. 
 
Chapter 9 - Advanced Movement and Control of the Robot: Introduces cases of wireless data 
transmission using Bluetooth/WiFi/Cellular/IoT communications based on the codes practiced up to the 
previous chapters, and practices what advantages and benefits are possible. It also introduces how to 
reflect various situations that may occur while the robot is operating with exception handling code. 
 



Finally, the 'SelfAbot' class concept and code introduced in this book are not the final version or final 
result for operating the Arduino robot. This code is merely one example for students to understand the 
C++ class concept and does not reflect many other code purposes or forms. 
 
Considering this, we encourage students to freely create their own Arduino robot classes and test them. 
  



***  For those who want to self-study C++ language with this book  *** 
 

 
 
 
This book can also be recommended to those who have no experience with the C language. The 

intent of this book is to make it as easy as possible for coding beginners to understand the C++ coding 
language. However, mentioning the basics of C language grammar in this book would increase the 
volume and complexity, so it was omitted. 

 
If you are completely unfamiliar with the basics of C language grammar, it is recommended to first 

read the basic grammar section described in the "Playing with Arduino Robot" online practical material 
part 1 distributed long ago. If you wish to watch on YouTube, you can view the video titled 'Elementary 
students can learn the basics of C language grammar in 40 minutes' at https://youtu.be/joUNuEGv3i0. 

 
Learning to code has always been seen as a process of mastering the basics of coding grammar. 

However, after the emergence of ChatGPT, we must revise all perspectives and viewpoints. Even if 
you do not know coding grammar immediately and cannot write a single line of code, if you can imagine 
the process of code development and the effects of code execution, you are in an era where you can 
write high-level code using ChatGPT. We have reached the era where 'computational thinking' is most 
required. To put it bluntly, it may be difficult for me to write code line by line based on code grammar, 
but if I can request code writing to ChatGPT regarding the purpose and method of the code I want, and 
I can read, judge, and modify the code when ChatGPT responds, that ability is more required. 

 
Therefore, 'coding grammar', which was essential for code writing, is no longer a mandatory learning 

threshold. Understanding the concept of coding has become more essential than coding grammar. 
Coding grammar and coding concepts are no longer synonymous. That's why we recommend 
experiencing this book first for readers who are learning to code for the first time. This book provides 
an opportunity to easily understand the C++ coding language, a deeper concept than the C language. 

 
This book does not cover detailed descriptions or usage of electronic components for robot movement, 

nor does it introduce the process of assembling the robot for readers who purchase the Arduino robot 
for the first time. If you are looking for more detailed materials, you can refer to the online practical 
material mentioned above. And descriptions of sensor components are intentionally omitted as much 
as possible, and it was written to be newer and closer to object-oriented programming than the previous 
materials. 

 
Finally, if you are learning C++ language coding for the first time with this book, it might be a good 

idea to briefly read through the previous materials after finishing this book. The basics are always 
important. 
 
 
 
 
 
About the Author 
 
The author has been working to spread 'Arduino' microcontrollers in Korea and distribute books through 
Fribot.com since 2012, while also acting as the official distributor of products from Parallax Inc. in the 
USA. The background of launching Arduino robot products and distributing many educational materials 
to domestic users is largely due to cooperation with Parallax Inc. 
 
To contact the representative of Fribot and the author of this book, you can use the address/contact 
information published on the Fribot website (fribot.com). 
 
You can use various channels such as phone, email(mail@fribot.com), and blog for contact. 
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1.1 C++ Object-Oriented Programming 
 
In C++, a class can be thought of as an 'extended form of a struct' from C. In the C language, a struct 
provides a way to bundle data into a single unit. Similarly, C++ classes bundle data, but with the 
additional capability to include functions (also called methods). 
 
The basic concepts are as follows: 
(1) Data Encapsulation: A class bundles data (variables) and the functions (methods) to process this 
data into a single unit. This closely links the data with its processing logic, making the code structure 
clearer and easier to manage. 
 
(2) Access Control: Classes can control the accessibility of data and functions. Access specifiers like 
public, private, and protected can be used to differentiate between members that can be accessed from 
outside the class and those that can only be accessed internally. 
 
(3) Reusability and Extension: Using classes enhances code reusability. Once a class is defined, 
multiple objects can be created based on it. Furthermore, inheritance allows for the extension or 



modification of existing class functionalities. 
 
As a simple example, consider a Car class. This class might have data such as fuel amount (fuel) and 
speed (speed), and include functions (methods) like accelerate() and brake(). Using classes, the state 
and behavior of the car can be defined and managed in one place, which is convenient. 
 

class Car { 
private: 
int fuel; 
int speed; 
 
public: 

void accelerate() { 
// Use fuel to increase speed 

} 
 

void brake() { 
// Decrease speed 

} 
}; 

 
Thus, classes bundle data and functions into a single logical unit, facilitating code reusability and 
maintenance. Users of the C language, already familiar with grouping data using structs, can think of 
classes as 'structs with functionality'. 
 
 
1.2 Class Coding: Blinking an Arduino LED 
 
Using the concept of classes, here's an example .ino for blinking an LED. See how Arduino code can 
be written using classes. Apply the following code to your Arduino, connecting the LED pin to pin 5. The 
method of connecting the LED and resistor to the Arduino is omitted. 
 
Ex1.1_Cplus_LED_on_off.ino  

#include "Arduino.h" 
class SelfArduino { 
public: 
SelfArduino() { } 
void setup() { } 
void digitalWrite(byte pin, byte value) { 

pinMode(pin, OUTPUT); 
::digitalWrite(pin, value); 

} 
 
private: 
}; 
 
SelfArduino adu; 
int pin = 5; 
void setup() { 
adu.setup(); 
} 
 
void loop() { 

adu.digitalWrite(pin, HIGH); 
delay(1000); 
adu.digitalWrite(pin, LOW); 
delay(1000); 

} 
 



This example can be used by adding the 'SelfAbot.zip' library to the Arduino and opening the example 
menu, where it is available in the SelfAbot folder as explained in Section 1 of Chapter 2. 
 
The above code is an example of using classes without the 'SelfAbot' library, but for convenience, it 
has been included in the 'SelfAbot' library. You can open the Arduino IDE program, create a new 
sketch, and copy-paste the code above into it. 
 
The code is explained as follows: 
It demonstrates the use of the 'SelfArduino' class for interacting with Arduino's digital pins. This code 
follows the basic principles of C++ classes and Arduino programming and is straightforward. Here's a 
brief explanation: 
 
(1) Including the Arduino library: 
#include "Arduino.h" 
This line includes the standard Arduino library, providing access to Arduino's common functions and 
types. 
 
(2) Class Definition - SelfArduino: 

class SelfArduino { 
public: 
SelfArduino() { } 
void setup() { } 
void digitalWrite(byte pin, byte value) { 

pinMode(pin, OUTPUT); 
::digitalWrite(pin, value); 

} 
private: 

// Private members would go here 
}; 

 
'SelfArduino' is a user-defined class. You create the name yourself. There is a constructor, 
SelfArduino(), that can be used to initialize the class. 
 
The setup() method is empty but can be used for initial setup tasks later. 
 
The digitalWrite() method is used to set the mode of a digital pin to OUTPUT and then write a value 
(HIGH or LOW) to that pin. The :: before digitalWrite indicates that it is calling a global function from 
the Arduino library, not a method belonging to the 'SelfArduino' class. If you name the digitalWrite(byte 
pin, byte value) method in the 'SelfArduino' class differently, you do not need to use the :: namespace 
prefix before ::digitalWrite(pin, value). 
 
(3) Creating an Object of the 'SelfArduino' Class: 

SelfArduino adu; 
int pin = 5; 

 
An object (or instance) adu of the 'SelfArduino' class is created. The pin is set to 5, indicating that 
digital pin 5 will be used. 
 
(4) Arduino setup() Function: 

void setup() { 
adu.setup(); 

} 
 
This function runs once when the Arduino starts. The setup() method of adu can be used for initial 
setup, but since no specific code is written here, it does not perform any action yet. 
 
(5) Arduino loop() Function: 

void loop() { 
adu.digitalWrite(pin, HIGH); 



delay(1000); 
adu.digitalWrite(pin, LOW); 
delay(1000); 

} 
 
This function runs repeatedly after setup(). It sets the digital pin 5 to HIGH (on) for 1000 milliseconds 
(1 second), waits, then sets it to LOW (off) and waits again for 1000 milliseconds. This creates a 
blinking effect on an LED or device connected to pin 5. It executes the digitalWrite method of the adu 
instance. 
 
 
1.3 Object-Oriented Programming: Encapsulation 
 
C++ object-oriented programming has very different characteristics from C language programming. 
While it satisfies many of the coding concepts of C language, it encompasses a more varied and 
comprehensive set of concepts. 
 
C language programming is based on a procedural programming approach. Thus, the C language 
programming method typically involves writing code in the order that the program progresses, listing 
first the code for operations, then the code for input and output methods, and the types of data. 
 
On the other hand, C++ object-oriented programming typically involves writing code according to the 
following principles, separate from the conceptual approach of data 'encapsulation/access 
control/reusability and extension': 
 
(1) First, declare an object. The object's composition can include public, private, and protected areas. 
Public area: Members can be accessed from anywhere outside the class where the object was 
created. 
Private area: Members can only be accessed within the class itself, and not directly from outside the 
class. 
Protected area: Members can be accessed within the class and derived classes (subclasses) but not 
from outside these classes. 
 
(2) Code the design concept of how to handle data. For this, design the details of the object. Declare 
the types of data and write methods as means to process the data. This includes declaring 
constructors. 
 
(3) Declare specific 'instances' using the class, and write code for their actual use.  
 
(Note) ----------------------------------------------------------------- 
In object-oriented programming, "instance" specifically means a concrete occurrence of any object 
or structure, while "object" is a more general term for an object. Creating an object of a class essentially 
creates an "instance" of that class. Each instance has a unique set of properties and methods defined 
by the class, but the specific values of these properties and their operational states can vary between 
instances. 
 
Encapsulation means making some members of an object private and providing public methods to 
access and interact with these private members. It involves bundling code that manipulates data with 
the data itself and restricting direct access to some components of an object to protect the integrity of 
the object. It's a core concept in class design to prevent unauthorized access and modification, 
promoting modularity and preventing external interference and misuse of the internal state of the object. 
-------------------------------------------------------------------------- 
 
The Arduino example code written below adds encapsulation functionality, presenting an improved 
Arduino class file compared to before. To write encapsulated code, we will set some members as 
private and provide public methods to interact with them. 
 
 
 



Ex1.2_CplusCapsule_LED_on_off.ino  
#include "Arduino.h" 
 
class SelfArduino { 
public: 
SelfArduino() { } 
 
// Public method to setup pins 
void setup(byte pin) { 

_pin = pin; 
pinMode(_pin, OUTPUT); 

} 
 
// Public method to write value to the pin 
void digitalWrite(byte value) { 

::digitalWrite(_pin, value); 
} 
 
private: 

byte _pin; // Private member variable to store the pin number 
// You can add more private methods and variables here 

}; 
 
SelfArduino adu; 
int pin = 5; 
 
void setup() { 

adu.setup(pin); // Setup the pin for abot 
} 
 
void loop() { 

adu.digitalWrite(HIGH); // Turn on the pin 
delay(1000); 
adu.digitalWrite(LOW); // Turn off the pin 
delay(1000); 

} 
 
 
Explained is the encapsulated version example for turning the LED light on and off. 
 
(1) _pin is a private member variable of the 'SelfAbot' class used to store the pin number. Since this 
variable cannot be accessed directly from outside the class, it is encapsulated within the class. 
 
(2) The setup method is public and used to initialize the pin. It sets the private _pin variable and 
initializes the pin mode. 
 
(3) The 'digitalWrite' method only requires a value ('HIGH' or 'LOW') and writes it to the pin specified 
by the private _pin variable. This method provides controlled access to the private _pin member. 
 
The encapsulation example demonstrates how to hide the internal state of an object and expose only 
what is necessary for interaction with the outside world. Using this approach allows for better modular 
design, making the code easier to maintain and extend. 
 
 
(Note) -------------------------------------------------------------------- 
_pin variable: The reason for using an underscore ('_') symbol before private variable names 
(1) Scope clarity: The underscore prefix helps distinguish private members (variables or methods) 
from public or protected members. 
 



(2) Avoiding name clashes: The underscore prefix for class members helps avoid name clashes and 
clarifies when class members are used instead of local variables. Especially in some coding practices 
using Getter/Setter methods, getter and setter methods have the same name as the variable. Using 
an underscore for member variables helps distinguish between methods and variables (e.g., 'age' for 
getter, '_age' for the private member). 
 
(3) Rules and readability: The underscore prefix for private members can become part of these 
standards to ensure consistency across the codebase. It visually segregates the code, making it 
easier to read and understand at a glance what variables are within a class. 
 
(4) Historical and language-specific conventions: Python uses double underscores (__) for name 
mangling, which is a stronger rule indicating the variable is private, but a single underscore is 
commonly used as a "soft" private indicator. It's more of a convention telling other developers it 
should be treated as a private member. The single underscore prefix is also used in languages like 
C++, but it is more of a convention than a language requirement. 
------------------------------------------------------------------------ 
 
The following notes explain why class files are separated into header files and source files, or how 
they are divided and created. 
 
(Note) ------------------------------------------------------------------- 
How to separate class files into header (.h) and source (.cpp) files ? 
In C++, dividing class definitions into header (.h) files and implementation (.cpp) files is common 
practice for several reasons. 
 
(1) Separation of interface and implementation: This separation allows the interface (defined in the .h 
file) to be separated from the implementation details (found in the .cpp file). Header files declare what 
the class (or function) does, and implementation files define how the class (or function) does it. This 
abstraction is useful for encapsulation, a core principle of object-oriented programming. 
 
(2) Reduced compile time: If the implementation in a .cpp file is changed, only that file needs to be 
recompiled, not all files that include the .h file. This can significantly reduce compile time in large 
projects. 
 
(3) Avoiding multiple definitions: In C++, the One Definition Rule (ODR) states that an entity (e.g., 
class, function, or variable) must have exactly one definition in the code. Placing definitions in .cpp 
files and declarations in .h files prevents multiple definitions of the same entity that could occur when 
the same header is included in multiple source files. 
 
(4) Improved readability and organization: Keeping the interface separate from the implementation 
makes the code easier to read and navigate. Developers can quickly understand the interface of a 
class by looking at the header files without getting bogged down in implementation details. 
 
(5) Better for team development: In a team environment, different team members can work on 
different parts of the code. A clear separation allows for parallel development without many conflicts. 
One team member can work on implementation while another works on the interface or uses the 
interface in other parts of the project. 
 
(6) Encouraging reusability and modularity: By separating the implementation, the same header file 
can be shared across multiple projects. This modularity makes the code easier to reuse. 
 
(7) Forward declaration and reduced dependencies: Using forward declarations in header files 
reduces the need to include other headers, decreasing coupling and dependencies between different 
parts of the codebase. 
 
In summary, separating .h and .cpp files in C++ is not just a stylistic choice but a fundamental practice 
that supports the principles of the language and especially improves the development process in 
larger, more complex projects. 
-------------------------------------------------------------------------- 



1.4 Introduction to the 'SelfAbot' Class 
 
 

 
 
Introducing the 'SelfAbot' class for operating the 'neo-Arduino robot'. 
 
Below, we expand on the previously discussed class concept to introduce a more generalized concept 
that allows for understanding beyond the specific 'SelfAbot' class. Therefore, please note that the 
following description introduces a broader concept of the actual 'SelfAbot' class. 
 
(1) 'SelfAbot' Class: 
This is the blueprint for the 'neo-Arduino robot' class. It defines the robot's operational functions 
(methods) and characteristics (attributes/variables) and does nothing beyond that. 
 
(2) 'SelfAbot' Object Design: 
Object design refers to the process of designing the entire class code, consisting of .h and .cpp files. 
Below, we have listed detailed elements for your review. Consider the various aspects described below 
when designing your class. 
 
'SelfAbot' Object Conceptualization: 
When thinking about what the 'SelfAbot' class can do or have (e.g., move forward, move backward, or 
servo status), describing the 'SelfAbot' object in design terms involves specifically defining these 
capabilities. 
 
Methods and Attributes Definition: 
For example, method code could include actions such as moving forward, stopping, changing direction, 
or interacting with sensors. Attribute variables describing the characteristics or state of the 'SelfAbot' 
robot could include variables for pins connected to servos, current speed, sensor values, etc. 
 
Abstraction and Encapsulation: 
Abstraction: When designing the 'SelfAbot' object, you abstract the complexity. You are not interested 
in how servos work at the electrical level or the details of the microcontroller's I/O pins. Instead, you 
focus on higher-level functionalities. 
Encapsulation: This design process includes determining which internal details should be hidden from 
the outside (encapsulation) and which details should be exposed as a public interface (public methods 
and properties). 
 
Interaction and Relationships: 
Interactions with other objects: Part of the design is understanding how 'SelfAbot' will interact with other 



objects or systems. This can include receiving commands, processing sensor data, and communicating 
with external devices. 
Relationships and Hierarchies: If there are different types of robots or components, you might design 
'SelfAbot' with inheritance or composition in mind. For example, 'SelfAbot' could be the base class for 
more specialized robot types or assemble functionality from smaller, more focused classes. 
 
Use Cases and Scenarios: 
Imagining Use Cases: Imagining various scenarios where 'SelfAbot' will be used helps in designing the 
object. Examples include navigating a maze, following a line, or reacting to sensor inputs. These use 
cases require the development of relevant methods and properties. 
 
Planning for Flexibility and Scalability: 
Adaptability: In the design, consider how easily the 'SelfAbot' object can be adapted or extended. For 
example, adding new functionalities or adapting to different hardware configurations. 
 
In summary, the designed 'SelfAbot' object is a conceptual model of what the robotic system should be 
able to do and what characteristics it should have. It combines defining functionalities, properties, 
interactions, and potential use cases with principles like abstraction, encapsulation, and adaptability in 
mind. 
 
(3) 'SelfAbot' Instances in Code: 
In the actual application code, writing something like SelfAbot myRobot; creates myRobot as an 
instance of the 'SelfAbot' class. It is a specific robot object that can interact within the program. Many 
instances (e.g., myRobot, yourRobot, etc.) can be created and distinguished, and each instance 
becomes a real entity with its own unique state and behavior as defined by the 'SelfAbot' class. 
 
The 'SelfAbot' class is an abstract blueprint, object design is a generalized code concept, and an 
instance is the implementation of that class concept in a concrete form within the code. The header file 
(SelfAbot.h) and source file (SelfAbot.cpp) of the 'SelfAbot' class are introduced at the end of Chapter 
1. 
 
 
1.5 Classes: Constructors, Member Variables, Constants 
 
(1) Constructors 
Default Constructor: 
The default constructor is a special type of constructor method that is called when an object is created 
without any arguments. For 'SelfAbot', the default constructor could set initial values for member 
variables such as servo pin numbers or default states. 
Example: SelfAbot::SelfAbot() { _selectedPin = INVALID_PIN; } 
 
Parameterized Constructor: 
This type of constructor allows passing parameters when creating an object to initialize it with specific 
values. For 'SelfAbot', a parameterized constructor could use the pin numbers for the left and right 
servos as arguments, allowing the user to specify the pins to be used for these components. 
Example: SelfAbot::SelfAbot(byte ServoLeftPin, byte ServoRightPin) { ... } 
 
(2) Member Variables and Constants 
Member Variables: 
Variables defined inside a class. They maintain the state of an object. In 'SelfAbot', member variables 
could include servo pin numbers, current speed, or status flags. 
Example: byte _servoLeftPin; 
 
Constants: 
Constants are values that, once set, do not change. In C++, they are often defined using const or 
#define. For 'SelfAbot', constants like INVALID_PIN could be used to represent invalid or undefined pin 
numbers. 
Example: const byte INVALID_PIN = 255; 



1.6 Member Functions and Overloading 
 
(1) Member Functions (also called 'Methods') 
Member functions are code written within a class that defines the actions (or operations) an object 
created from that class can perform. In the context of arduino or C++ environments, dealing with classes 
is about creating the blueprint for a robot. For example, in an Arduino class, digitalWrite() is an action 
that creates a digital output of 5V or 0V on a pin specified by the code. The SelfAbot class also defines 
various member functions, which will be explained in more detail later. 
 
(2) Function Overloading 
Function overloading is a feature of object-oriented programming where two or more functions (or 
methods) can have the same name but different parameters. It's a way to create multiple methods with 
the same name that perform similar tasks but may require different inputs. Thus, function overloading 
allows for multiple methods to have the same name but different parameters. 
 
This provides flexibility in how methods are used. The example code below briefly explains function 
overloading, but there will be an opportunity to see how function overloading is used in the actual 
'SelfAbot' class code for the arduino robot and what effects it has. 
 
Two examples of class methods usage: 

void SelfAbot::digitalWrite(byte value) and 
void SelfAbot::digitalWrite(byte pin, byte value) are both valid and used for different purposes. 

 
For example, in the digitalWrite() function, it's possible to pass both the pin and value parameters 
together, or use function overloading to pass the pin value as an instance value and only the value 
parameter. When representing abot instance code, both of the following forms are possible. 
 
Here is an example of not using function overloading versus using it in Arduino .ino code. The two 
different code usages below actually show the same code execution result, just represented differently. 
 

SelfAbot abot; // Creating an abot instance 
 
// Example code not using function overloading 
abot.digitalWrite(pin, value); 
 
// Example code using function overloading 
abot(pin).digitalWrite(value); 

  



Appendix: 'SelfAbot.zip' library header and source files (SelfAbot.h & SelfAbot.cpp) 
//'arduino robot class library SelfAbot.h' @0.1.10  
#ifndef SelfAbot_h 
#define SelfAbot_h 
 
#include "Arduino.h" 
#include <Servo.h> 
 
class SelfAbot { 
public: 
 SelfAbot(); 
 SelfAbot(byte servoLeftPin, byte servoRightPin); 
 SelfAbot& operator()(byte pin); 
 SelfAbot& operator()(byte leftPin, byte rightPin); 
 
 void setup(); 
 
 void digitalWrite(byte pin, byte value); 
 void digitalWrite(byte value); 
 void analogWrite(byte pin, int value); 
 void analogWrite(int value); 
 int digitalRead(byte pin); 
 int digitalRead(); 
 void tone(byte pin, unsigned int frequency, unsigned long duration); 
 void tone(unsigned int frequency, unsigned long duration); 
 
 void servoAttachAngle(byte servoAnglePin); // 
 void servoAttachPins(byte servoLeftPin, byte servoRightPin); // 
 
 void servoAngle(int angle); 
 void servoSpeed(int speed); 
 void servoSpeed(int leftSpeed, int rightSpeed); 
 void detachServos(); 
 
 int irDetect(byte irLedPin, byte irReceiverPin, int frequency); 
 int irDistance(byte irLedPin, byte irReceivePin); 
 
 void pulseOut(byte pin, unsigned long duration); 
 unsigned long pulseIn(byte pin, int state); 
 unsigned long pulseCount(byte pin, unsigned long duration); 
 

unsigned long rcTime(byte pin); 
 
 
private: 
 byte _servoAnglePin, _servoLeftPin, _servoRightPin; 
 Servo _servoAngle, _servoLeft, _servoRight;  
 byte _selectedPin; 
 
 byte _irLedPin; 

byte _irReceiverPin; 
byte _lastReadValue_ir; 

}; 
 
#endif 



//'arduino robot class library SelfAbot.h' @0.1.10 
#include "SelfAbot.h" 
#define INVALID_PIN 255  
 
int SelfAbot::_lastReadValue = 0; 
 
SelfAbot::SelfAbot() { 

_selectedPin = INVALID_PIN; 
} 
 
SelfAbot::SelfAbot(byte servoLeftPin, byte servoRightPin) 
: _servoLeftPin(servoLeftPin), _servoRightPin(servoRightPin) { 
_selectedPin = INVALID_PIN; 
} 
 
SelfAbot& SelfAbot::operator()(byte pin) { 

_selectedPin = pin; 
return *this; 

} 
 
SelfAbot& SelfAbot::operator()(byte leftPin, byte rightPin) { 

_servoLeftPin = leftPin; 
_servoRightPin = rightPin; 
return *this; 

} 
 
void SelfAbot::setup() { 

if (_servoLeftPin != INVALID_PIN && _servoRightPin != INVALID_PIN) {  
_servoLeft.attach(_servoLeftPin); 
_servoRight.attach(_servoRightPin); 

} 
} 
 
// Original method 
void SelfAbot::digitalWrite(byte pin, byte value) {  

pinMode(pin, OUTPUT); 
::digitalWrite(pin, value);  

} 
// Overloaded method 
void SelfAbot::digitalWrite(byte value) {  

if (_selectedPin != INVALID_PIN) { 
pinMode(_selectedPin, OUTPUT); 
::digitalWrite(_selectedPin, value); 

} 
} 
 
// Original method 
void SelfAbot::analogWrite(byte pin, int value) { 

::analogWrite(pin, value);  
} 
// Overloaded method 
void SelfAbot::analogWrite(int value) { 

if (_selectedPin != INVALID_PIN) { 
::analogWrite(_selectedPin, value);  

} 
} 
 
// Original method 
int SelfAbot::digitalRead(byte pin) { 



pinMode(pin, INPUT); 
return ::digitalRead(pin); 

} 
// Overloaded method 
int SelfAbot::digitalRead() { 

if (_selectedPin != INVALID_PIN) { 
pinMode(_selectedPin, INPUT); 

 return ::digitalRead(_selectedPin); 
} 

} 
 
// Original method 
void SelfAbot::tone(byte pin, unsigned int frequency, unsigned long duration) { 

::tone(pin, frequency, duration);  
} 
// Overloaded method 
void SelfAbot::tone(unsigned int frequency, unsigned long duration) { 

if (_selectedPin != INVALID_PIN) { 
::tone(_selectedPin, frequency, duration);  

} 
} 
 
// Original method  
void SelfAbot::servoAttachPins(byte servoLeftPin, byte servoRightPin) { 

if (servoLeftPin != INVALID_PIN) { 
_servoLeftPin = servoLeftPin; 
_servoLeft.attach(_servoLeftPin); 

} 
if (servoRightPin != INVALID_PIN) { 

_servoRightPin = servoRightPin; 
_servoRight.attach(_servoRightPin); 

} 
} 
 
// Original method  
void SelfAbot::servoAttachAngle(byte servoAnglePin) { 

if (servoAnglePin != INVALID_PIN) { 
_servoAnglePin = servoAnglePin; 
_servoAngle.attach(_servoAnglePin); 

} 
} 
// Overloaded method 
void SelfAbot::servoAngle(int angle) { 

_servoAngle.write(angle); 
} 
// Overloaded method 
void SelfAbot::servoSpeed(int speed) { 

if (_selectedPin == _servoLeftPin) { 
_servoLeft.writeMicroseconds(1500 + speed); 

} else if (_selectedPin == _servoRightPin) { 
_servoRight.writeMicroseconds(1500 + speed); 

} 
} 
// Overloaded method 
void SelfAbot::servoSpeed(int leftSpeed, int rightSpeed) { 

_servoLeft.writeMicroseconds(1500 + leftSpeed); 
_servoRight.writeMicroseconds(1500 + rightSpeed); 

} 
// Overloaded method 



void SelfAbot::detachServos() { 
_servoLeft.detach(); 
_servoRight.detach(); 

} 
 
// Original method 
int SelfAbot::irDetect(byte irLedPin, byte irReceiverPin, int frequency) { 

_irLedPin = irLedPin; 
_irReceiverPin = irReceiverPin; 
pinMode(_irLedPin, OUTPUT); 
pinMode(_irReceiverPin, INPUT); 
tone(_irLedPin, frequency, 8);  
delay(1); 
int _lastReadValue_ir = ::digitalRead(_irReceiverPin); 
delay(1); 
return _lastReadValue_ir; 

} 
 
// Original method 
int SelfAbot::irDistance(byte irLedPin, byte irReceivePin) { 

int distance = 0; 
for(long f = 38000; f <= 42000; f += 500) { 

distance += irDetect(irLedPin, irReceivePin, f);  
} 
return distance; 

} 
 
// Original method 
void SelfAbot::pulseOut(byte pin, unsigned long duration) { 

pinMode(pin, OUTPUT); 
digitalWrite(pin, HIGH); 
delayMicroseconds(duration); 
digitalWrite(pin, LOW); 

} 
 
// Original method 
unsigned long SelfAbot::pulseIn(byte pin, int state) { 

pinMode(pin, INPUT); 
return ::pulseIn(pin, HIGH); 

} 
 
// Original method 
unsigned long SelfAbot::pulseCount(byte pin, unsigned long duration) { 

pinMode(pin, INPUT); 
unsigned long startTime = micros(); 
unsigned long endTime = startTime + duration; 
unsigned long count = 0; 

 
while (micros() < endTime) { 

if (::digitalRead(pin) == HIGH) { 
count++; 
while (::digitalRead(pin) == HIGH); 

} 
} 
return count; 

} 
 
// Original method 
unsigned long SelfAbot::rcTime(byte pin) { 



pinMode(pin, OUTPUT); 
digitalWrite(pin, HIGH); 
delay(1);  
pinMode(pin, INPUT); 
digitalWrite(pin, LOW); 
unsigned long startTime = micros(); 
unsigned long elapsedTime = 0; 
while (digitalRead(pin) == HIGH) { 

elapsedTime = micros() - startTime; 
} 
return elapsedTime; 

} 

 
  



Chapter 2 Arduino Functions and Overloading  
 
2.1 Adding the 'SelfAbot' Library to Arduino and Utilizing Examples 
2.2 Executing Arduino Functions 
2.3 Simplification through Function Overloading 
 

 

 
 
 

 
This book is a textbook designed to learn C++ object-oriented programming using the 'Arduino Uno' 
microcontroller for educational robots. It includes standard Arduino input and output functions in the 
'SelfAbot' class, which is designed to learn C++ coding. Therefore, before diving into C++ robot 
coding, it guides you to first learn how standard Arduino functions are used in the class. 
 
If you're more interested in the operation of the C++ Arduino robot, you may skip Chapter 2 and go 
directly to Chapter 3.  
 

  



2.1 Adding the 'SelfAbot' Library to Arduino and Utilizing Examples 
 
The 'SelfAbot' library, designed to easily learn the concept of classes in the C++ language through 
Arduino robots, has been introduced at the beginning, but you can receive notifications on the Fribot 
website (https://fribot.com) or download the file made public on GitHub (https://github.com/wookjin-
chung/SelfAbot). Even if you found the class concept explanation in Chapter 1 to be tedious, from now 
on, you will be guided to feel interested through direct practice. (Note: After downloading from GitHub, 
you should rename the file to “SelfAbot.zip“.) 
 
There are various ways to add libraries in Arduino. Here, the method of directly adding the 'SelfAbot' 
library is described. Download the Arduino IDE program and install the library. The 'Arduino robot' used 
in the practice is the 'Fribee EDU' Arduino Uno compatible board based on the Arduino UNO. 
 
Adding a Library to the Arduino IDE Program 

(1) Download the SelfAbot.zip file. (※ Download from GitHub) 

(2) Select 'Add Library' in the Arduino IDE.  
 

      
(a)                                     (b) 

 
Figure 2.1 (a) Older version of the Arduino IDE program (b) Newer version of the Arduino IDE program 
 
Click and select the 'SelfAbot.zip' file you downloaded on your computer a moment ago. 
(3) Now your computer is ready to use the 'SelfAbot' library. 
 
Utilizing Arduino 'SelfAbot' Library .ino Examples 
Once you add the library to the Arduino program, you can use the various .ino examples included in the 
File->Examples->SelfAbot folder. The examples are organized by chapter, making it easy to find and 
use the examples introduced in each chapter of this book. 
The 'SelfAbot' library folder in Arduino also includes the EnhancedSelfAbot library along with SelfAbot. 
 

 
Figure 2.2: Utilizing Arduino SelfAbot Library Examples 



If the content up to Chapter 7 uses examples utilizing the 'SelfAbot' library, Chapter 8 can use examples 
utilizing the subclass library 'EnhancedSelfAbot', which makes use of class inheritance. Try using 
methods to handle the robot more delicately and concisely. 
 

 
2.2 Executing Arduino Functions 
 
2.2.1 Turning the LED On and Off with the digitalWrite() Function 
Connect the anode (+) of the LED to pin 5 of the Arduino, then connect it in series with a 220Ω resistor, 
and finally connect it to the ground (- : GND). Refer to Figure 2.3 for the method of connecting the LED. 
Once the hardware setup is complete, upload the code below to the Arduino and observe the LED light 
turning on and off at 1-second intervals. 
 

 
Figure 2.3: How to Connect an LED Circuit to Arduino Pins 

 
What are the differences between the Ex2.1_LED_ON_OFF.ino code in C++ format (left code) and the 
code for turning the Arduino LED on and off in C language format (right code)? 
 
Upload the Ex2.1_LED_ON_OFF.ino file. The left code is written in C++ language, and the right code 
is written in C language. 

#include "SelfAbot.h" 
SelfAbot abot; 
int pin = 9; 
 
void setup() { 

// abot.setup(); 
} 
void loop() { 

abot.digitalWrite(pin, HIGH); 
delay(1000); 
abot.digitalWrite(pin, LOW); 
delay(1000); 

} 

int pin = 9; 
 
void setup() { 

pinMode(pin, OUTPUT); 
} 
void loop() { 

digitalWrite(pin, HIGH); 
delay(1000); 
digitalWrite(pin, LOW); 
delay(1000); 

} 

 
The line #include "SelfAbot.h" includes the definition of the 'SelfAbot' class. It instructs the Arduino IDE 
to use the code defined in the SelfAbot.h file. The library code must be in the same folder as this sketch 
or in the Arduino libraries folder. 
 
SelfAbot abot; Here, an object (or instance) called abot of the SelfAbot class is created. Just as a 
personal car is a specific instance of the general concept of a car, think of 'abot' as a specific instance 
of the 'SelfAbot' class. 
 
int pin = 9; This line declares an integer variable named pin and initializes it with the value 9. This 
number represents the digital pin number on the Arduino board to be used in this sketch. 
 
//abot.setup(); This line is commented out (// indicates a comment). If activated, it would call the setup 
method for the abot instance. This method is used for initial setup of the 'SelfAbot' class, such as setting 
pin modes or initializing components. 
 
abot.digitalWrite(pin, HIGH); Calls the digitalWrite method of the 'SelfAbot' class within the abot instance. 
It sets the digital pin (in this case, pin number '9') to 'HIGH'. This means 5V, turning the pin on. The 
method internally includes the pinMode() setting, so it does not need to be executed separately. 

void SelfAbot::digitalWrite(byte pin, byte value) {  
pinMode(pin, OUTPUT); 
::digitalWrite(pin, value);  



} 
 
delay(1000); This function pauses the program for 1000 milliseconds (or 1 second). It is used here to 
maintain the pin at a high level for a short period. 
 
abot.digitalWrite(pin, LOW); Similar to the previous digitalWrite, but this time it sets the pin to 0V, or 
LOW, turning off anything connected to that pin. 
 
delay(1000); Pauses the program for another second, keeping the pin low during that time. 
 
 
2.2.2 Using the digitalRead() Function for Button Input and Output  
The code below is understood in the same context as the previously explained code, but it uses a new 
method of the 'SelfAbot' class, digitalRead(). 
 
Figure 2.4 shows how to connect a digital signal button input to an Arduino pin and, at the same time, 
connect an LED circuit to output a digital signal according to the button input signal. The pin numbers 
for the LED and button pins should match the sketch number of the user. 
The code abot.digitalRead(buttonPin) is a method defined to use Arduino's digitalRead function. It is 
used with the abot instance, and the value is stored in the buttonState variable. Then, it is written to 
operate the digitalWrite function differently using an if statement, depending on whether the variable 
value is ‘1’ or ‘0’. 

 
Figure 2.4: How to Connect a Button to Arduino Pins (Pull-Down Method) 

 
Ex2.2_Button_LED_ON_OFF.ino  
#include "SelfAbot.h" 
SelfAbot abot; 
const int buttonPin = 8;  
const int ledPin = 9; 
int buttonState = 0;  
 
void setup() { 

// abot.setup(); 
} 
void loop() { 

buttonState = abot.digitalRead(buttonPin); 
if (buttonState == HIGH) {  

abot.digitalWrite(ledPin, HIGH); 
} else {  

abot.digitalWrite(ledPin, LOW); 
} 

} 
 
For reference, you can explore more about the button circuit by consulting the 'Playing with Arduino 
Robots' online practical material distributed a long time ago, or the circuit diagram introduced in Section 
3 of Chapter 2 of this book. 
 
One more thing to note about button circuits is that because button switches generate digital signals 



through physical/mechanical contact, pressing the button doesn't just create an ON/OFF electrical 
signal once, but it can happen multiple times. This issue can make the microcontroller's input signal 
processing unstable. 
 
The debouncing code introduced below is a toggle method that ensures only a single on/off signal is 
registered when pressing or releasing the button, regardless of the physical bouncing that occurs when 
the button state changes. Although it's possible to create a debouncing effect using external circuits 
with resistors and capacitors, the software method is generally used because it's easier and more cost-
effective to implement. 
The timing for debouncing can be adjusted to best suit the user's convenience in the code below; 
debounceDelay is the debounce time. It enhances the reliability of the signal generation in the button 
circuit and can be set to sensitive conditions to user reactions. 
 
(Note) What is Debounce? --------------------------------- 
Debounce is a technique that, in the case of multiple requests sent by a user, only executes once at 
the beginning or end and ignores the events during a set period of time. 

Figure 2.5: Conceptual Diagram of Debouncing 
------------------------------------------------------------------------- 
 
 
Ex2.3_Button_debounce_LED_ON_OFF.ino  
#include "SelfAbot.h" 
SelfAbot abot; 
 
const int buttonPin = 8;  
const int ledPin = 9; 
 
int ledState = HIGH; 
int buttonState;  
int lastButtonState = LOW;  
 
unsigned long lastDebounceTime = 0; 
unsigned long debounceDelay = 50;  
 
void setup() { 

abot.setup(); 
abot.digitalWrite(ledPin, ledState); 

} 
 
void loop() { 

int reading = abot.digitalRead(buttonPin); 
 

if (reading != lastButtonState) { 
lastDebounceTime = millis(); 

} 
if ((millis() - lastDebounceTime) > debounceDelay) { 

if (reading != buttonState) { 
buttonState = reading; 
if (buttonState == HIGH) { 

ledState = !ledState; 
} 

} 
} 



 
abot.digitalWrite(ledPin, ledState); 
lastButtonState = reading; 

} 
 

 
 
2.2.3 Making Sound with the tone() Function 
This is an Arduino sketch for playing melodies using a buzzer connected to Arduino. The tone() function 
is used to create sounds of various pitches, and here, we introduce a practice of playing melodies using 
the tone method written in the 'SelfAbot' class. The tone method written in the class is as follows. Two 
methods are versions that do not use function overloading and versions that do. 
 

void SelfAbot::tone(byte pin, unsigned int frequency, unsigned long duration) { 
::tone(pin, frequency, duration);  

} 
void SelfAbot::tone(unsigned int frequency, unsigned long duration) { 

if (_selectedPin != INVALID_PIN) { 
::tone(_selectedPin, frequency, duration);  

} 
} 
 

 
Figure 2.6: Schematic Diagram of Buzzer (Piezo Speaker) to Arduino Pins 

 
 

 
Figure 2.7: Frequency Values for Each Musical Note (Image source: parallax.com) 

 
Ex2.4_Buzzer_melody.ino  
#include "SelfAbot.h" 
#include "pitches.h“ 
 
SelfAbot abot; 
 
int melody[] = { 

NOTE_C4, NOTE_G3, NOTE_G3, NOTE_A3, NOTE_G3, 0, NOTE_B3, NOTE_C4 
}; 
int noteDurations[] = { 

4, 8, 8, 4, 4, 4, 4, 4 
}; 



void setup() { 
// abot.setup(); 
for (int thisNote = 0; thisNote < 8; thisNote++) { 

int noteDuration = 1000 / noteDurations[thisNote]; 
abot.tone(6, melody[thisNote], noteDuration); 

 
int pauseBetweenNotes = noteDuration * 1.30; 
delay(pauseBetweenNotes); 

 
noTone(6); 

} 
} 
 
void loop() { 
} 

 
The code is explained as follows: 
(1) Including Libraries: 

#include "SelfAbot.h" 
#include "pitches.h" 

 
SelfAbot.h: This contains the definition of the 'SelfAbot' class. 
pitches.h: This file includes definitions for the frequencies of musical notes (e.g., NOTE_C4, NOTE_G3) 
used to play different tones. 
 
(2) Creating an Object: 
SelfAbot abot; This line creates an object (or instance) 'abot' of the 'SelfAbot' class. This object is used 
to access methods provided by this class, such as playing tones. 
 
(3) Defining Melody and Duration: 
int melody[] = { ... }; 
int noteDurations[] = { ... }; 
melody[]: An array containing the frequencies of the notes to be played. 
noteDurations[]: An array containing the duration of each note in the melody. Durations are represented 
as fractions of a whole note (e.g., '4' for a quarter note, '8' for an eighth note). 
 
(4) setup Function: 

void setup() { 
for (int thisNote = 0; thisNote < 8; thisNote++) { 

... 
} 

} 
 
This function is called once when the Arduino starts. It includes a 'for' loop that iterates over the notes 
of the melody. Each note is played using the 'abot.tone()' method, which generates sound on pin '6'. 
 
(5) Playing the Melody: 

int noteDuration = 1000 / noteDurations[thisNote]; 
abot.tone(6, melody[thisNote], noteDuration); 

 
noteDuration: Calculates the duration of each note in milliseconds. 
abot.tone(6, melody[thisNote], noteDuration): Plays the current note. The tone method uses three 
parameters: the pin number (6) where the buzzer is connected, the frequency of the note 
(melody[thisNote]), and the note's playtime (noteDuration). 
 
(6) Pause Between Notes (pauseBetweenNotes variable): 

int pauseBetweenNotes = noteDuration * 1.30; 
delay(pauseBetweenNotes); 
noTone(6); 



 
The pause between notes is very important in expressing the melody. This variable represents the rest 
time between the sound notes. After playing a note, there is a short pause (pauseBetweenNotes) 
equivalent to 1.30 times the note duration, followed by the noTone function stopping the tone function 
on pin 6. 
 
(7) The loop Function: 

void loop() { } 
 

In this case, since the melody is played only once in the 'setup' function, the 'loop' function is left empty. 
 
 
2.2.4 Controlling an LED with the analogWrite() Function 
After connecting an LED component to the Arduino hardware, the code below introduces how to control 
an LED using the analogWrite() function in a sketch uploaded to Arduino. The sketch creates a fading 
effect on an LED connected to pin 9 of the Arduino. 
 
For the Arduino Uno, there are six pins capable of analog output (PWM), which are pins ~D3, ~D5, ~D6, 
~D9, ~D10, ~D11. These are the pins marked with a tilde on the board. 
 

 
Figure 2.8: Arduino Uno Board and Fribee_Edu Uno Compatible Board 

 
The 'Fribee Board (FRIBEE EDU)' used for Arduino robot practices uses the same setup method as the 
'Arduino Uno'. It includes 3-pin ports and circuit functions that support additional servo motor operations 
and comes with built-in sockets for mounting XBee/Zigbee antennas, Bluetooth antennas, and WiFi 
antennas, allowing for easy wireless expansion. 
 
The types of antennas suitable for wireless functionality expansion of the Fribee Board and how to use 
them will be explained again in Chapter 9. 
 
Ex2.5_LED_fade_IN_OUT.ino  
#include "SelfAbot.h“ 
 
SelfAbot abot; 
int pin = 9; 
 
void setup() { 

// abot.setup(); 
} 
void loop() { 

for (int fadeValue = 0 ; fadeValue <= 255; fadeValue += 5) { 
abot.analogWrite(pin, fadeValue); 
delay(30); 

} 
for (int fadeValue = 255 ; fadeValue >= 0; fadeValue -= 5) { 

abot.analogWrite(pin, fadeValue); 
delay(30); 

} 
} 

 



(1) Including the SelfAbot Library: 
#include "SelfAbot.h" This line includes the 'SelfAbot' library, a custom library for controlling various 
components of a robot or electronic system. 
 
(2) Creating a SelfAbot Instance: 
SelfAbot abot; 
 
An instance (object) named abot of the 'SelfAbot' class is created. This object is used to access the 
functionalities provided by the 'SelfAbot' class. 
 
(3) Pin Setup: 
int pin = 9; Declares the integer variable 'pin' and initializes it with the value '9', which is the pin number 
on the Arduino board to which the LED (or other component) is connected. 
 
(4) setup Function: 

void setup() { 
//abot.setup(); 

} 
 
The setup() function is executed once when the Arduino is powered on or reset. This code includes a 
commented-out line //abot.setup(); that can be used to initialize settings if necessary. 
 
(5) loop Function: 

void loop() { 
// Code inside this function 

} 
 
Unlike the setup(), the loop() function is executed repeatedly. It contains logic for implementing a fading 
effect. The logic for fading is explained below. 
 
(6) Fading Logic: 
The code uses two for loops to create a fading effect. 
First for loop: Gradually increases brightness. 
 

for (int fadeValue = 0; fadeValue <= 255; fadeValue += 5) { 
abot.analogWrite(pin, fadeValue); 
delay(30); 

} 
 
This loop increments fadeValue by 5 from 0 to 255. 
abot.analogWrite(pin, fadeValue): This line sends fadeValue to the pin, subtly expressing the brightness 
of the LED with an analog function. The range of analog values is from 0 (off) to 255 (maximum 
brightness). 
delay(30): Pauses the loop for 30 milliseconds between each brightness change to create a noticeable 
fading effect. 
 
Second for loop: Gradually decreases brightness. 
 

for (int fadeValue = 255; fadeValue >= 0; fadeValue -= 5) { 
abot.analogWrite(pin, fadeValue); 
delay(30); 

} 
 
This loop decreases fadeValue back down to 0 from 255. 
The rest of the loop operates similarly to the first loop but in reverse, gradually dimming the LED's 
brightness. 
 
 
  



2.3 Simplification through Function Overloading 
 
2.3.1 Turning an LED On and Off with the digitalWrite() Function  
The code below is an Arduino coding example that passes the pin value as an instance variable to the 
abot. This use of code is called function overloading. Using function overloading allows for clearer 
transmission of Arduino pin information. 
 
Recall the practice from Section 2.2.1 where we used the digitalWrite() function without overloading to 
turn an LED on and off in the .ino example Ex2.1_LED_ON_OFF.ino. Then, re-upload the example 
below and practice achieving the same effect. 
 
 
Ex2.6_LED_ON_OFF_pin_overloading.ino (overloaded type) 

overloaded non-overloaded 

#include "SelfAbot.h“ 
 
SelfAbot abot; 
int pin = 9; 
 
void setup() { 

// abot.setup(); 
} 
void loop() { 

abot(pin).digitalWrite(HIGH); 
delay(1000); 
abot(pin).digitalWrite(LOW); 
delay(1000); 

} 

#include "SelfAbot.h“ 
 
SelfAbot abot; 
int pin = 9; 
 
void setup() { 

// abot.setup(); 
} 
void loop() { 

abot.digitalWrite(pin, HIGH); 
delay(1000); 
abot.digitalWrite(pin, LOW); 
delay(1000); 

} 
 
From now on, we will show how to use the 'SelfAbot' class with the overloaded operator() method. To 
explain the usage of the overloaded code simply: 
 
abot(pin).digitalWrite(HIGH); This line is where the function is overloaded. The abot instance object is 
used together with the parentheses abot(pin), which calls the operator() method of the 'SelfAbot' class. 
This method is designed to accept a pin number and return a reference to the 'SelfAbot' object. Then, 
the digitalWrite(HIGH) function is called on this object, setting the specified pin (in this case, pin 9) to 
HIGH (typically 5V), turning on the LED or other devices connected to that pin. 
 
abot(pin).digitalWrite(LOW); Similar to the previous line, but sets the pin to LOW (0V), turning off any 
connected device. 
 
(Note) ---------------------------------------------------------------------- 
The reason for using function overloading is that it allows for the explicit passage of values that can 
be passed as instance variables. Furthermore, by using the same function name, you can create 
multiple versions of a function that allow for different types based on the number of parameters or the 
data types of the parameters. This provides more flexibility in how functions are used, making the code 
more versatile and easier to read. 
-------------------------------------------------------------------------------- 
 
 
2.3.2 Practicing Button Circuit with Function Overloading 
A button circuit is a method of transmitting external switch signals to a microcontroller like Arduino. 
Especially when using buttons with microcontrollers like Arduino, it is common to use pull-up or pull-
down resistors to ensure a stable button state (HIGH or LOW). Both configurations have their unique 
characteristics and are used to prevent "floating" states of the digital input pins when the button is not 
pressed. 
 



Compare the pull-up and pull-down button circuits below in the table. Pull-up and pull-down resistors 
are used to ensure a stable and predictable state for the digital input pin of the button circuit, preventing 
unpredictable readings caused by floating states. Remember how digital pin 2 (D2) is connected in the 
circuit diagrams below. 
 
Table 2.1 Two types of electronic circuits for configuring button circuits 

 pull-up circuit pull-down circuit 

Circuit 
diagram 

 
 

Circuit 
characteristics 

In a pull-up resistor configuration, the input pin 
is typically pulled to a HIGH state (connected 
to Vcc). 
When the button is pressed, the circuit is 
connected to ground (GND), causing the input 
pin to become LOW. 

In a pull-down resistor configuration, the input pin 
is typically pulled to a LOW state (connected to 
GND). 
When the button is pressed, the circuit is 
connected to positive voltage (Vcc), causing the 
input pin to become HIGH. 

 
Ex2.7_Button_LED_ON_OFF_pin_overloading.ino 

#include "SelfAbot.h“ 
 
SelfAbot abot; 
const int buttonPin = 8;  
const int ledPin = 9; 
int buttonState = 0;  
 
void setup() { 

// abot.setup(); 
} 
void loop() { 

buttonState = abot(buttonPin).digitalRead(); 
if (buttonState == HIGH) {  

abot(ledPin).digitalWrite(HIGH); 
} else {  

abot(ledPin).digitalWrite(LOW); 
} 

} 
 
 
The code within the loop function is explained as follows: 
buttonState = abot(buttonPin).digitalRead(); Executes the digitalRead function to read the state value 
of the button pin. This function is a method of the 'SelfAbot' class. It uses the function overloading of 
the abot instance to pass the pin information, buttonPin value. 
 
Then, when executing an if statement, 
if the buttonState value is HIGH, it executes abot(ledPin).digitalWrite(HIGH); if it is LOW, it executes 
abot(ledPin).digitalWrite(LOW);. For example, abot(ledPin).digitalWrite(HIGH); uses function 
overloading to pass the ledPin information and turns on the LED. 
 
 



2.3.3 Analog Input 
Another practice example is a code that expresses the change in LED brightness as an analog PWM 
output according to the size of the analog input value when the input voltage is changed with a variable 
resistor. There is no method defined in the 'SelfAbot' class for processing analog input signals. 
Therefore, standard Arduino coding can be used. 
 

                 
Figure 2.9: Analog Input Circuit            Figure 2.10: Variable Resistor 

 
The A and B pins of the variable resistor are connected to the total resistance, and turning the handle 
knob of the variable resistor changes the resistance value connected to the W pin, A-W and W-B 
resistance. 
 
Ex2.8_Potentiometer_analog_LED.ino  

#include "SelfAbot.h“ 
 
SelfAbot abot; 
int pin = 9; 
int sensorPin = A0; 
int sensorValue = 0; 
void setup() { 

// abot.setup(); 
} 
void loop() { 

sensorValue = analogRead(sensorPin)/4; 
abot.analogWrite(pin, sensorValue); 

} 
 

  



Chapter 3 Robot Initialization and Basic Action Methods 
 
3.1 Implementing the setup Method for Robot Initialization 
3.2 Robot Movement Properties and Methods 
3.3 Simplification through Function Overloading 
3.4 Standard Servo Motor Basic Actions 
3.5 Continuous Rotation Servo Motor Basic Actions 
 

 
 

 
 
 

The 'neo-Arduino car' has been used so far for practicing C language coding. Many users feel that 
learning C language alone is insufficient, and thus, they are looking for ways to utilize Arduino robots 
using C++ language. 
 
In this chapter, we will explain the methods of the 'SelfAbot' class and examine how each method is 
specifically connected and used in robot actions. Please refer to Section 1.4 for a brief introduction to 
the header file (.h) and source file (.cpp) of the 'SelfAbot' class used in the code below.  
  



3.1 Implementing the setup Method for Robot Initialization 
 
The Arduino setup() method is responsible for the robot's initial settings. This function checks if the 
servo motor pins are valid and, if so, connects the servo motors to those pins. Initialization is essential 
for the proper operation of the robot. The initialization process involves setting up the servo motors, pin 
configurations, and other fundamental settings of the robot. 
 
Here's how to use the setup() function to initialize the robot: 
 
(1) Servo motor pin configuration: Specify the pin numbers to which the robot's servo motors will be 
connected. This is usually done when creating the robot object. 
For example, you can pass the pin numbers for the left and right servo motors when creating the robot 
object, like so: SelfAbot abot(LEFT_SERVO_PIN, RIGHT_SERVO_PIN). This method creates an 
instance object with parameters, thereby passing the servo motors' pin numbers. 
 
(2) Calling the setup() method: The setup() method actually connects the robot's servo motors to the 
pins and performs additional initialization tasks if necessary. Call the robot object's setup() method 
within the main setup() function of Arduino. Thus, by adding the necessary initialization code in the 
setup() method rather than in the constructor, you can set the robot's initial conditions. 
 

void setup() { 
abot.setup(); // Calls the robot's setup method 

} 
 
(3) Necessary additional initialization: Depending on the robot, additional initialization tasks may be 
required. For example, initializing sensors or setting certain pins as input or output falls under this 
category. 
 
The setup() function is called only once when the Arduino program starts and is used to perform the 
basic settings of the robot. Through this process, the robot is prepared to execute various commands 
that will be run later. 

 
Figure 3.1: Neo-Arduino Robot Car 

 
 
 
3.2 Robot Movement Properties and Methods 
 
In the 'SelfAbot' class, we introduce member variables and functions for moving the servo motors of an 
Arduino robot. Let's look at each of their roles. 
 
Member Variables 
Servo _servoAngle, _servoLeft, _servoRight; 
These are objects of the 'Servo' class from the Arduino Servo library. Each object controls a specific 
servo motor. The _servoAngle variable is a member variable for moving a standard servo motor, and 
the other two, _servoLeft and _servoRight, are member variables for moving continuous rotation servo 
motors connected to the wheels on both sides of the robot. 
 
byte _servoAnglePin, _servoLeftPin, _servoRightPin; 



Variables that store the pin numbers to which each servo motor is connected. They store the pin 
numbers connected to the standard servo motor and continuous rotation servo motors. 
 
byte _selectedPin; 
This variable is intended to store the pin number of a specific servo motor or other component currently 
being controlled or interacted with. 
 
Use in Overloaded Functions: 
Using _selectedPin in overloaded member functions allows the use of the same function name for 
operations on different components by internally referencing the pin number stored in _selectedPin. 
This eliminates the need to explicitly pass the pin number each time the function is called. 
 
Single Instance Variable Operation: 
By setting _selectedPin to the pin number of the desired component, subsequent operations can be 
performed on that specific component. This is particularly useful in classes managing multiple 
components (e.g., multiple servo motors). 
 
Member Functions 
The two member functions servoAttachAngle(byte ServoAnglePin) and servoAttachPins(byte 
ServoLeftPin, byte ServoRightPin) are written to use the original function form without using overloading. 
The remaining servo motor operation-related member functions (or methods) are written to use code 
that employs overloading. 
 
servoAttachAngle(byte ServoAnglePin); 
Connects the servo used for angle control to the specified pin (servoAnglePin). This function is for 
explicitly passing the pin value of the standard servo motor. Although this function does not use 
overloading, additional code is needed to employ overloading. 
 
servoAttachPins(byte ServoLeftPin, byte ServoRightPin); 
Connects the left and right servo motors to their respective pins. The servoAttachPins() function 
explicitly passes the pin values of the left and right servo motors as two parameter values. This function 
does not use overloading. To use overloading, a separate method must be additionally written. 
 
Ex3.1_nonoverloaded_servo_speed.ino  
#include "SelfAbot.h" 
 
SelfAbot abot; 
 
void setup() { 

abot.setup(); 
abot.servoAttachPins(13, 12); 

 
abot.servoSpeedNonoverload(150, -150); 
delay(2000); 

} 
 
void loop() { 
 
} 

 
In this code example, we use the method servoSpeedNonoverload() which does not employ function 
overloading. 
 
First, we will explain the operating principle from the library code in an easy-to-understand manner. 
(1) Method: SelfAbot::setup() 
 

void SelfAbot::setup() { 
if (_servoLeftPin != INVALID_PIN && _servoRightPin != INVALID_PIN) {  

_servoLeft.attach(_servoLeftPin); 



_servoRight.attach(_servoRightPin); 
} 

} 
 

This function initializes the servo motors mounted on the robot. 
It checks if the pins for the left and right servos (_servoLeftPin and _servoRightPin) are valid (by 
checking if they are not equal to the already defined constant INVALID_PIN, which represents an 
incorrect or unused pin). 
 
If the pins are valid, it attaches the servo objects (_servoLeft and _servoRight) to the respective pins. 
Here, "attaching" means passing the pin connected to the servo motor to the servo library for control. 
 
(2) Method: SelfAbot::servoAttachPins(byte ServoLeftPin, byte ServoRightPin) 
 

void SelfAbot::servoAttachPins(byte servoLeftPin, byte servoRightPin) { 
if (servoLeftPin != INVALID_PIN) { 

_servoLeftPin = servoLeftPin; 
_servoLeft.attach(_servoLeftPin); 

} 
if (servoRightPin != INVALID_PIN) { 

_servoRightPin = servoRightPin; 
_servoRight.attach(_servoRightPin); 

} 
} 

 
This code does not use overloaded functions; instead, it uses the pin values for the left and right servos 
as parameters to store them in the variables corresponding to the two wheels' servo motors, and runs 
the attach() function of the servo motor to prepare the servo motors for operation. 
 
This feature is used to specify which pins the left and right servo motors are connected to. 
It individually checks each pin. If the pin is not INVALID_PIN, it stores the new pin number and attaches 
the left or right servo to the left or right pin. 
 
(3) Method: SelfAbot::servoSpeedNonoverload(int leftSpeed, int rightSpeed) 
 

void SelfAbot::servoSpeedNonoverload(int leftSpeed, int rightSpeed) { 
_servoLeft.writeMicroseconds(1500 + leftSpeed); 
_servoRight.writeMicroseconds(1500 + rightSpeed); 

} 
 
This feature sets the speed for the left and right servo motors. 
 
It uses the 'writeMicroseconds' method, a precise way to control servo motors. '1500' is the neutral point 
of the servo, and adding a speed variable allows the servo to rotate clockwise or counterclockwise. The 
method servoSpeedNonoverload() for operating the servo motor does not use additional servo pin 
information. Instead, the servo pin information is passed through the servoAttachPins() method, and 
the same servo pin information is implicitly transmitted and applied by being used in the 
servoSpeedNonoverload() method. 
 
Below is a detailed explanation of each line of the Arduino .ino sketch code introduced above. 
(1) Including the SelfAbot Library 

#include "SelfAbot.h" 
 
This code includes the SelfAbot library, declaring that the SelfAbot class and its functionalities can be 
used. 
 
(2) Robot Setup 

SelfAbot abot; 
void setup() { 



abot.setup(); 
abot.servoAttachPins(13, 12); 
abot.servoSpeed(150, -150); 
delay(2000); 

} 
 
The code line SelfAbot abot; creates a SelfAbot object named abot. 
The setup() function runs once when Arduino is reset or powered on. 
 
The abot.setup() method initializes the servo motors. 
abot.servoAttachPins(13, 12) sets the pins for the left and right servos to 13 and 12, respectively. 
abot.servoSpeed(150, 150) sets the speed for the left and right servos. 
delay(2000) pauses the code for 2000 milliseconds (or 2 seconds). 
The loop() function is empty. This means that Arduino does not perform any repetitive code execution 
tasks at the moment. 
 
(Note) ---------------------------------------------------------------- 
Preparatory work to operate the 'neo-Arduino robot car' servo motors  
(1) Upload the Arduino sketch to the board using the IDE program. 
(2) Connect all the servo motor connection pins to the Arduino board. Ensure to connect the white, red, 
and black wires in the correct orientation. (White: Signal, Red: 5V Power, Black: Ground, 0V) 
(3) If power is supplied via a USB cable, there is no need to prepare separate AA batteries. However, 
if you wish to test the operation of the servo motors after removing the USB cable, you must install 5 
AA batteries and connect the power jack to the board. 

 

 
Figure 3.2: The 3-Point Switch on the Arduino Robot Board (Fribee-Edu Board) 

 
(4) The 3-point switch on the Arduino board must be switched in the direction of the arrow shown below. 

The 3-point switch is differentiated into 0, 1, 2 positions; the '0' position cuts off the power from the AA 
batteries, the '1' position supplies power for the operation of the Arduino program only, and the '2' 
position supplies power for the operation of the servo motors as well. 

 
If the robot behaves very abnormally when power is supplied to the servo, you may need to first perform 

the 'Centering the Servo' in Section 4.1, and then rerun the example code.  
------------------------------------------------------------------------------ 
 

  



3.3 Simplification through Function Overloading 
 
Overloaded methods can be used to make the functionalities of the robot more concise and flexible. 
The Arduino robot methods below are all written using code that employs function overloading. 
 
servoAngle(int angle); 
This function sets the servo angle, positioning a standard servo motor used for angle control within a 
range of 0 ~ 180 degrees to a specific angle. If the condition in the conditional statement is true, it 
executes the _servoAngle.write(angle) method. The write(angle) method is an Arduino function for 
operating a standard servo. In this case, the servo instance representing _servoAngle is passed as an 
overloaded value. Therefore, only the angle value needs to be passed as the parameter value for the 
servo motor method. 

void SelfAbot::servoAngle(int angle) { 
 if (angle >= 0 && angle <= 180) { 
   _servoAngle.write(angle); 
 } else { 
   Serial.println("Error: Invalid input value"); 
 } 
} 
 

servoSpeed(int speed); 
The speed of the currently selected servo motor is set. This method allows you to adjust the servo to a 
specific speed. The servoSpeed(int speed) method uses the writeMicroseconds() function of the 
Arduino servo class to operate one continuous rotation servo motor. This method uses instance 
variables to pass the corresponding pin information. Therefore, only the speed value for the servo motor 
connected to the corresponding pin is passed as a parameter. 
 
One consideration is to determine whether the pin in use is for the left wheel or the right wheel and to 
ensure that the servo motor operates according to the intent of the code. In the case of an overloaded 
instance variable with one parameter, _selectedPin is used for transmission. 
 
Thus, the value of _selectedPin is determined by a conditional statement to see whether it is the 
instance value of the left wheel stored by the user through the execution of the servoAttachPins(byte 
servoLeftPin, byte servoRightPin) method or the instance value of the right wheel, performing the 
operation in accordance with the user's code intent. The method used in actual code examples will be 
explained again in Section 3.5. 
 

void SelfAbot::servoSpeed(int speed) { 
if (_selectedPin == _servoLeftPin) { 

_servoLeft.writeMicroseconds(1500 + speed); 
} else if (_selectedPin == _servoRightPin) { 

_servoRight.writeMicroseconds(1500 + speed); 
} 

} 
 
servoSpeed(int leftSpeed, int rightSpeed); 
Independently sets the speed of the left and right servo motors. The setting function for the operation 
of both wheels allows independent control of the speed for the left and right servos. 
 
The servoSpeed(int leftSpeed, int rightSpeed) method uses the writeMicroseconds() function of the 
Arduino servo class to operate two continuous rotation servo motors simultaneously. This method uses 
the leftSpeed and rightSpeed values to operate the left and right servo motors, respectively. 
 
The pin information for operating the left and right wheels is passed as instance values using the 
function overload feature. The method used in actual code examples will be explained again in Section 
3.5. 
 

void SelfAbot::servoSpeed(int leftSpeed, int rightSpeed) { 
_servoLeft.writeMicroseconds(1500 + leftSpeed); 



_servoRight.writeMicroseconds(1500 + rightSpeed); 
} 

 
detachServos(); 
This code detaches all servo motors from the pins to prevent control and also reduces power 
consumption. Calling the method detachServos() disconnects the connections of the servo motors 
assigned to the left and right wheels. If you want to detach only a specific wheel using the function 
overload feature, additional code is required. 
 

void SelfAbot::detachServos() { 
_servoLeft.detach(); 
_servoRight.detach(); 

} 
 
These methods are used to precisely control the robot's servo motors and perform a variety of 
movements and actions. This design facilitates a modular approach that allows each motor to be 
controlled independently or in conjunction with other motors, depending on the requirements of the 
robot. 
 
 
3.4 Standard Servo Motor Basic Actions  

 
Examine the differences between overloaded methods and the original methods, and see how 
overloaded methods are used in robot actions. Using overloaded methods has the effect of explicitly 
passing the pin information of the servo motors that contribute to robot actions. 
 

 
Figure 3.3: Parallax Standard Servo Motor 

 
Upload the below Arduino Ex3.2_standard_Servo_control.ino file and observe how the standard servo 
motor operates. This example introduces both primitive method forms without overloading and methods 
with function overloading applied. 
 
To use a servo motor for the first time, you must set the servo motor to an electrical ready state. In 
Arduino, this action is performed with the command servo.attach(). 
For the same purpose, the code below abot.servoAttachAngle(servoPin) is intended to create the 
electrical ready state for a standard servo motor. By explicitly passing the pin number as a parameter 
in the initial setup of the servo motor, it has the effect of making the servo motor pin information written 
by the user in the code recognizable. 
 
The method abot(servoPin).servoAngle(pos) to create movement for the standard servo motor uses the 
abot instance variable to pass the pin information 10, and only the angle value, which represents the 
actual size of the movement, is passed as a parameter. 
 
Method without overloading: 

abot.servoAttachAngle(servoPin); 
Method with overloading: 

abot(servoPin).servoAngle(pos); 
 
 
 
 



Ex3.2_standard_Servo_control.ino  
#include "SelfAbot.h" 
const byte servoPin = 10; 
SelfAbot abot; 
 
void setup() { 

abot.setup(); 
abot.servoAttachAngle(servoPin); 

} 
 
void loop() { 

for (int pos = 0; pos < 180; pos += 1) { 
abot(servoPin).servoAngle(pos); 
delay(15); 

} 
for (int pos = 180; pos >= 1; pos -= 1) { 

abot(servoPin).servoAngle(pos); 
delay(15); 

} 
} 

 
 
3.5 Continuous Rotation Servo Motor Basic Actions  
 
The robot's two wheels use methods to create continuous rotation servo motor movements. One 
method is abot(13).servoSpeed(0), and the other method is abot(13,12).servoSpeed(-150,150). The 
two methods differ in that one uses a single parameter while the other uses two parameters. Both types 
of methods use function overloading to pass the servo motor's pin information as instance variables, in 
addition to the method's parameters. 
 

 
Figure 3.4: Parallax Continuous Rotation Servo Motor 

 
Just like with standard servo motors, continuous rotation servo motors also require initial setup. To set 
up the continuous rotation servo motors connected to both wheels, we first use the method 
servoAttachPins(byte servoLeftPin, byte servoRightPin) that does not use function overloading. 
This code execution sets the pin information corresponding to the left and right wheels as determined 
by the user. In the method, these values are stored in instance variables corresponding to the left wheel, 
and simultaneously, the initial setup function servo.attach() for the servo motor of the left wheel is 
executed. The right wheel is set up in the same manner. Let's examine the example code below.  
 
Below detailed explanation of the example code is focused on using the 'SelfAbot' class to control a 
robot, with a particular focus on servo motor operation. 
 
(1) Including the 'SelfAbot' Library: 
#include "SelfAbot.h" 
 
This includes the SelfAbot library, granting access to the 'SelfAbot' class and its functionalities. 
 
(2) Setting Constants for Servo Pins: 
const byte servoLeftPin = 255; 



const byte servoRightPin = 255; 
 
Ex3.3_continuous_Servo_speed.ino  
#include "SelfAbot.h" 
 
const byte servoLeftPin = 255; 
const byte servoRightPin = 255; 
SelfAbot abot(servoLeftPin, servoRightPin); 
 
void setup() { 

abot.setup(); 
abot.servoAttachPins(13, 12); 

} 
void loop() { 

abot(13).servoSpeed(0); 
abot(12).servoSpeed(0); 
delay(1000); 

 
abot(13).servoSpeed(150); 
abot(12).servoSpeed(-150); 
delay(1000); 

 
abot(13, 12).servoSpeed(-150, 150); 
delay(1000); 

} 
 
Here, two constants, servoLeftPin and servoRightPin, are defined with the value 255. The value 255 is 
used as a temporary placeholder to prevent uninitialized states since it's not an actual pin value on the 
Arduino. 
 
(3) Creating an Instance of 'SelfAbot': 
SelfAbot abot(servoLeftPin, servoRightPin); 
 
This code creates an object, abot, of the 'SelfAbot' class, initializing it with the left and right servo pins. 
Since the initial value of 255 is used, the actual pin numbers are set in the code later. 
 
(4) The setup() Function: 
void setup() { 
abot.setup(); 
abot.servoAttachPins(13, 12); 
} 
 
setup() is a function called once by the Arduino when the program starts, used for initializing settings. 
abot.setup() calls the setup method for the abot object, which initializes the servo. 
abot.servoAttachPins(13, 12) connects the servos to digital pins 13 and 12 on the Arduino board. 
 

※ Are you curious if the abot instance uses a default constructor or a constructor with two 
parameters? Let's take a closer look. 
 
The abot instance is created with the code SelfAbot abot(servoLeftPin, servoRightPin); using a two-
parameter constructor of the 'SelfAbot' class. This constructor uses two arguments, 'servoLeftPin' and 
'servoRightPin'. Despite both parameters being initialized to 255, it calls the constructor expecting two-
byte values as parameters. 
 
Later, the code abot.servoAttachPins(13, 12); calls a method of the SelfAbot class on the already 
created abot instance. It does not create a new instance but uses the already created 'abot' instance to 
connect the servos to digital pins 13 and 12 on the Arduino board. 
 



The next code, abot(13).servoSpeed(0);, also does not create a new instance of the 'SelfAbot' class but 
modifies the state of the already created abot instance. The abot(13) syntax utilizes the operator() 
function of the 'SelfAbot' class. This operator is overloaded in the 'SelfAbot' class to set the _selectedPin 
member variable to the value passed as an argument. In this case, it sets _selectedPin to 13. 
 
After this operator call, servoSpeed(0) is called on the same abot instance, operating based on the just-
set value of _selectedPin, which is now 13. This pattern allows for a flexible interface that enables 
chaining method calls on the same object in a readable and expressive manner. 
 
To clarify, abot(13).servoSpeed(0); performs the following steps: 
 
Calls operator()(13) on the abot instance, setting _selectedPin to 13. 
Then, calls the servoSpeed(0) method on the abot instance. 
This method operates based on the value of _selectedPin, which is currently 13. 
 
(5) The loop() Function: 
 

void loop() { 
abot(13).servoSpeed(0); 
abot(12).servoSpeed(0); 
delay(1000); 
 
abot(13).servoSpeed(150); 
abot(12).servoSpeed(-150); 
delay(1000); 
 
abot(13, 12).servoSpeed(-150, 150); 
delay(1000); 

} 
 
The code within the loop() function operates as follows: 
 
abot(13).servoSpeed(0); and abot(12).servoSpeed(0); stop the servos connected to pins 13 and 12, 
respectively. A servo motor speed value of 0 represents a stopped state. 
 
delay(1000); pauses the program for 1000 milliseconds (1 second). 
 
Subsequently, the servos are set to different speeds, for example, 150 or -150, causing the servo 
motors to rotate clockwise or counterclockwise by the specified amount. 
 
abot(13, 12).servoSpeed(-150, 150); sets different speeds for the two servos simultaneously, allowing 
the robot to rotate or move in a specific pattern. The first parameter value controls the speed of the 
wheel connected to the left servo motor, and the second parameter value controls the speed of the 
wheel connected to the right servo motor. This code essentially provides both parameters 
simultaneously to control the two servo motors, managing the two wheels' stop, start, and direction 
change actions. 
 
Another 1-second delay loop repeats. 
 
The 'SelfAbot' class offers an organized way to control robots using function overloading and easy-to-
understand commands. 
  



Chapter 4 Controlling the Movement of the Arduino Robot 
 
4.1 Centering the Servo Motor 
4.2 Straight-line Travel and Robot Correction 
4.3 Left Turn / Right Turn and Continuous Actions 
4.4 Gradual Acceleration and Deceleration 
4.5 Additional Method: maneuver()  

 
 
 
 

 
 

 
 
 
Until now, we focused on explaining the methods within the 'SelfAbot' class. Starting from Chapter 4, 
we will focus on how to use the 'SelfAbot' class to operate Arduino robots. 
 
Users who have handled Arduino robots with C language will be able to compare the practices more 
familiarly. For users encountering this material for the first time, we aim to explain as simply and 
concisely as possible for easy understanding. If you feel the explanations are insufficient, reading the 
'Arduino Robot Practice Guide' written in C language or watching public YouTube videos is 
recommended. 
  



4.1 Centering the Servo Motor 
 
Connect the continuous rotation servo motor to the Fribee board by referring to the diagram below, 
Figure 4.1. When connecting the servo pins to the Fribee board, insert them with the black wire facing 
towards the breadboard. You can use pins 13 and 12, or pins 11 and 10. 
 
When power is first supplied to the Arduino board, a flashing signal is detected from LED pin 13 as the 
bootloader starts to operate (a default behavior of the Arduino board). Therefore, every time a reset 
signal is used on the robot, there is a tendency for the robot to move briefly. To avoid this issue, using 
servo motor pins 11 and 10 can resolve the problem. 

 
 

Figure 4.1: How to Connect Servo Pins on an Arduino Robot 

  Clockwise rotation 

Counterclockwise rotation 
 
Figure 4.2: PWM modulation control method for the Parallax continuous rotation servo (Source: 
parallax.com)  
 
 
(Note) -------------------------------------------------------------------- 
Understanding the Basic Operation of Servo Motors for Robot Locomotion 
To attempt the servo wheel rotation for forward motion of the 'Arduino robot', the right wheel must rotate 



clockwise and the left wheel counter-clockwise when viewed from the direction of travel. 

 
Figure 4.3: Forward Motion Servo Motor Rotation Direction 

-------------------------------------------------------------------------- 
 
Servo motor operation uses Pulse Width Modulation (PWM) control within a fixed cycle. The rotation of 
the servo motor, either clockwise or counter-clockwise, varies from the center value '0' of the pulse 
width in PWM control. In other words, the direction and magnitude of the servo motor's rotation are 
controlled by changing the active pulse width of the PWM signal. If the pulse within the standard range 
is shorter or longer, it precisely controls the amount of rotation from the neutral position in either 
clockwise or counter-clockwise direction. 
 
When servo motors are shipped from the factory for use, especially in robotics where precise control is 
needed, it is necessary to physically calibrate the servo's movement. Servo motors incorporate a 
variable resistor for this purpose of physical calibration. Users can find and align the physical midpoint 
by adjusting a screw. 

 
 

Figure 4.4: Adjusting the screw for servo motor centering (Source: parallax.com) 
 
Ex4.1_servo_centering.ino  
#include "SelfAbot.h" 
#define INVALID_PIN 255; 
 
const byte servoLeftPin = INVALID_PIN; 
const byte servoRightPin = INVALID_PIN; 
 
SelfAbot abot(servoLeftPin, servoRightPin); 
 
void setup() { 

abot.setup(); 
abot.servoAttachPins(13, 12); 

} 
 
void loop() { 

abot(13).servoSpeed(0); 
abot(12).servoSpeed(0); 
delay(1000); 

 
abot(13, 12).servoSpeed(0, 0); 



delay(1000); 
} 

 
Centering the servo motor is introduced with example code. For Parallax's continuous rotation servo 
motors, a value of '1500' corresponds to the center position, and in the 'SelfAbot' class's servo method, 
a speed value of '0' represents the center position. Uploading the code below to the Arduino robot 
should result in the wheels being in a stationary state. If there is slight movement, adjust the screw to 
eliminate this minor movement. This process is referred to as 'centering the servo motor.' 
 
Upload the code below to ensure the wheels do not move and to perform the servo motor centering 
task. In the conditions of the practice code, the servo motors are connected to pins 13 and 12. 
 
 
4.2 Straight-line Travel and Robot Correction 
 
We introduce a graph showing how the speed of the Parallax continuous rotation servo motor can be 
varied.  

 
Figure 4.5: Changes in Pulse Width for Speed of Parallax Continuous Rotation Servo Motor (Source: 
parallax.com) 
 
The range of speed values can be adjusted from -200 to +200 based on a reference of 1500. As the 
table below demonstrates, the effective speed change mostly occurs within the range of -100 to +100. 
Furthermore, a speed value of -40 or +40 nearly represents a mid-speed. 
 
In robotics, using two servo motors for straight-line robot motion can result in performance 
discrepancies due to manufacturing differences, wear, or mechanical characteristics, even when the 
same speed values are supplied. To address this issue and achieve more precise straight-line 
movement, a method to adjust each motor's speed for correction can be implemented. 
 
This example introduces code design for fine-tuning the rotation speed of two servos, considering 
mechanical inconsistencies. Identifying performance differences can involve measuring RPM or 
assessing deviation from a straight line over a set distance. Such adjustments may need to be repeated 
due to battery wear or load changes, and should be done using only AA battery power, without USB 
power, for accuracy. 
 
Real-time accurate motion tracking can be achieved with encoders or similar sensors. Even without 
encoders, calibrating in consistent external conditions, like surface texture, can improve straight-line 
accuracy. 
 
Below is a correction code using the abot instance that incorporates normalization and variance 
concepts. 
 

float deviationFactor = 0.0; 
void driveStraight(int leftSpeed, int rightSpeed) { 

// Apply normalization to calculate correction coefficients 



float leftCoefficient = 1.0 + deviationFactor; // Increase for left servo 
float rightCoefficient = 1.0 - deviationFactor; // Decrease for right servo 

 
int adjustedLeftSpeed = leftSpeed * leftCoefficient; 
int adjustedRightSpeed = rightSpeed * rightCoefficient; 

 
abot.servoSpeed(adjustedLeftSpeed, adjustedRightSpeed); 

} 
 
The deviationFactor is a single floating-point number between -1.0 and 1.0. A value of 0 indicates no 
deviation (both servos run at the same speed), positive values increase the speed of the left servo and 
decrease the speed of the right servo, and negative values do the opposite. 
 
In the driveStraight method, the deviation factor adjusts each servo's speed for normalized speed 
adjustment. The speed of the left servo increases with a positive deviation, and the speed of the right 
servo decreases, and vice versa. 
 
You're encouraged to add the code introduced here to your 'SelfAbot' library or Arduino .ino file for 
testing. We will revisit the method of implementing precise wheel action correction codes through class 
inheritance later. 
 
First, follow the straight-line driving practice as shown in the figure below. The concept involves aligning 
one wheel of the robot with a ruler and positioning both wheels so they are perpendicular to the ruler. 
For correction, after the Arduino robot has moved forward for a certain time (delay(2000) in the code 
below), check the distance (deviationDistance) by which the wheel aligned with the ruler has deviated. 
Repeat the correction practice until this distance is minimized. Adjust the deviationFactor value between 
-0.15 and +0.15, remembering to use decimal values as it's a float variable. 
 

 
Figure 4.6: Conceptual Diagram for Correction Practice for Straight-Line Driving of Arduino Robot 
 
Ex4_2_abot_driveStraight.ino  

#include "SelfAbot.h" 
#define INVALID_PIN 255; 
 
const byte servoLeftPin = INVALID_PIN; 
const byte servoRightPin = INVALID_PIN; 
float deviationFactor = 0.0; // min. val -0.15 max. val +0.15 
 
SelfAbot abot(servoLeftPin, servoRightPin); 
 
void setup() { 



abot.setup(); 
abot.servoAttachPins(11, 10); 
driveStraight(40, -40); 
delay(8000); 
abot.servoSpeed(0, 0); 
delay(1000); 

} 
 
void loop() { 
 
} 
 
void driveStraight(int leftSpeed, int rightSpeed) { 

// Apply normalization to calculate correction coefficients 
float leftCoefficient = 1.0 + deviationFactor; // Increase for left servo 
float rightCoefficient = 1.0 - deviationFactor; // Decrease for right servo 

 
int adjustedLeftSpeed = leftSpeed * leftCoefficient; 
int adjustedRightSpeed = rightSpeed * rightCoefficient; 

 
abot.servoSpeed(adjustedLeftSpeed, adjustedRightSpeed); 

} 
 
 
This code is an example for controlling a robot based on Arduino (using the 'SelfAbot' class here). The 
aim of the code is to make the robot with two servo motors drive straight, even when the physical 
operating characteristics of the two servos are not identical, by applying fine corrections. Users need to 
iteratively adjust the 'deviationFactor' value to ensure the robot drives straight accurately. 
 
When the robot advances with two servo motors, the speed difference between the wheels may not be 
noticeable at speeds above 100. However, at the lowest speed of 20, the robot might veer significantly 
left or right from a straight-line path, creating a curved trajectory. This behavior implies that different 
correction coefficients need to be applied for various speed values between 20 and 100. 
 
For convenience in correction, a speed value '40', which is almost the median, is used to find an 
approximate value for straight-line driving, and the same conditions are applied to minimize errors in 
straight-line driving at other speeds of the robot. The principle of finding the correction value 
deviationFactor is to apply a positive value in the range of 0.0 to 0.15 if the robot veers left, and a 
negative value in the range of -0.15 to 0.0 if it veers right, aiming to find the optimum condition value. 
 
Let's take a closer look at each part of the provided code. 
 
(1) Library and Variables, Object Initialization: 

#include "SelfAbot.h" 
#define INVALID_PIN 255 
 
const byte servoLeftPin = INVALID_PIN; 
const byte servoRightPin = INVALID_PIN; 
float deviationFactor = 0.0; // range -0.15 to +0.15 
SelfAbot abot(servoLeftPin, servoRightPin); 
 

The 'SelfAbot.h' library is included to utilize the functionalities defined in the SelfAbot class. The 
variables servoLeftPin and servoRightPin represent the pin numbers to which the servo motors will be 
connected. Initially set to 255, these may need to be updated to actual pin numbers. The deviationFactor 
is used as a speed correction coefficient for the servo motors, set to 0 here. 
 
(2) In the setup() function, the abot object is created to control the robot. 

void setup() { 
abot.setup(); 



abot.servoAttachPins(11, 10); 
driveStraight(40, -40); 
delay(2000); 
abot.servoSpeed(0, 0); 
delay(1000); 

} 
 
The robot is initialized with the call to abot.setup();.  
The pins connected to the left and right servo motors are set with abot.servoAttachPins(11, 10);.  
The function driveStraight(40, -40); is called to make the robot move straight, where 40, -40 represents 
the speeds of the left and right servos, respectively. After waiting for 2 seconds with delay(2000);,  
the servo motors are stopped with abot.servoSpeed(0, 0);. 
 
(3) The loop() function: 
 

void loop() { 
// Currently empty.  

} 
 

The loop() function is currently empty, and you can add any code here that you want to run repeatedly. 
 
(4) The driveStraight() function: 
 

void driveStraight(int leftSpeed, int rightSpeed) { 
// ... (code omitted) ... 
abot.servoSpeed(adjustedLeftSpeed, adjustedRightSpeed); 

} 
 

This function makes the robot move straight. The leftCoefficient and rightCoefficient are used to correct 
the speed of the left and right servo motors, respectively. 
 
The servoSpeed(adjustedLeftSpeed, adjustedRightSpeed) is called with abot.servoSpeed() to set the 
servo motor speeds for the driveStraight() to enable as straight a drive as possible. This code controls 
the two servo motors of the robot to perform a straight-line motion. 
 
Note that when testing driveStraight() using the example sketch Ex4_2_abot_driveStraight.ino, the 
robot tended to veer to the right. The most accurate straight-line drive was achieved when 
'deviationFactor' was corrected to -0.06. It is recommended that you also test this with various driving 
speed values.  
 
 
4.3 Left Turn / Right Turn and Continuous Actions  
 
When creating robot movements with two wheels, various types of rotations are depicted in Figure 4.7. 
 
Spot Rotation: First, by operating both wheels at the same speed but in opposite directions to the 
direction of travel, the robot can be made to spin in place. We will cover what experiments can be done 
with this movement in later sections. 
 
Pivot Rotation: By stopping one wheel and rotating the other, the robot rotates around the stationary 
wheel. This action is called pivot rotation. 
 
Curved Drive: Similar to the forward movement of the robot, operating both servo motors in the same 
direction but at different speeds will cause the robot to rotate largely in the direction of the slowly rotating 
wheel, drawing a wide arc. This action is called a curved drive. 
 



 
Figure 4.7: Robot Rotation (a) Spot Rotation (b) Pivot Rotation (c) Curved Drive 

 
Now, we introduce the code for stopping, moving forward, pivot turning left, pivot turning right, and 
moving backward with the Arduino robot. The robot action code below is represented in the sketch for 
both cases: using one parameter and using two parameters. Function overloading is used to control the 
wheel actions of the robot in any case.  
 
Ex4.3_abot_basic_drive.ino  
#include "SelfAbot.h" 
#define INVALID_PIN 255; 
const byte servoLeftPin = INVALID_PIN; 
const byte servoRightPin = INVALID_PIN; 
 
SelfAbot abot(servoLeftPin, servoRightPin); 
 
void setup() { 

abot.setup(); 
abot.servoAttachPins(11, 10); 

} 
 
void loop() { 

abot(11).servoSpeed(0); 
abot(10).servoSpeed(0); 
delay(1000); 

 
abot(11).servoSpeed(150); 
abot(10).servoSpeed(-150); 
delay(1000); 

 
abot(11, 10).servoSpeed(0, -150); 
delay(1000); 
abot(11, 10).servoSpeed(0, 150); 
delay(1000); 
abot(11, 10).servoSpeed(-150, 150); 
delay(1000); 

} 
 
 
The practice example maintains a stationary state for 1 second, then moves forward, and with the left 



wheel stopped, the right wheel rotates clockwise and counterclockwise for 1 second each, followed by 
a backward motion. Try creating robot actions by setting various wheel speed changes for different 
cases.  
 
 
4.4 Gradual Acceleration and Deceleration 
 
When using code to linearly accelerate the speed of servo motors moving wheels, there are several 
considerations compared to the basic method of instantaneous speed change: 
 
(1) Energy Efficiency 
Gradual Speed Change: This method can be more energy-efficient in some cases. Sudden changes 
in speed require higher current spikes, which can strain the battery. 
Instantaneous Speed Change: Immediate changes can lead to high inrush currents, which are not 
only inefficient but can also reduce the lifespan of the battery and motor. 
 
(2) Mechanical Stress 
Reduced Stress with Gradual Changes: Gradually changing speeds reduces mechanical stress on 
the motor and all connected mechanical components, potentially extending their lifespan. 
Increased Stress with Instant Changes: Sudden changes can cause more wear due to abrupt forces 
applied to the motor and load. 
 
(3) Battery Life and Performance 
Gradual Changes for Battery Life: Smooth transitions in power demand prevent excessive current 
draw that could heat and damage the battery, helping to maintain its condition over time. 
Instant Changes and Potential Battery Strain: High peak currents from sudden speed changes can 
burden the battery, potentially decreasing its overall lifespan and performance. 
 
(4) Control and Precision 
Better Control through Gradual Changes: Gradual changes often allow for better motor control, 
crucial for applications requiring precision. 
Control Challenges with Instant Changes: While instant changes are simpler to implement, they may 
not offer the same level of control, especially in tasks requiring finesse or precision. 
 
(5) Application-Specific Considerations 
Load Characteristics: The efficiency of each method can vary depending on the characteristics of the 
load driven by the motor. 
Operating Environment: Factors like temperature, usage frequency, and required torque can influence 
which method is more suitable. 
 
The example gradualServoSpeed(int targetLeftSpeed, int targetRightSpeed) for Arduino robots 
describes a method for gradually moving wheels. This approach doesn't immediately execute the target 
speed but gradually changes it, increasing or decreasing the current speed in steps until the target 
speed is reached, contrasting with the instantaneous wheel speed change method. 
 

void SelfAbot::gradualServoSpeed(int targetLeftSpeed, int targetRightSpeed) { 
int currentLeftSpeed = 0; // Initialize current speed for left servo 
int currentRightSpeed = 0; // Initialize current speed for right servo 
int step = 5; // Determine the step size for speed change 

 
while (currentLeftSpeed != targetLeftSpeed || currentRightSpeed != targetRightSpeed) { 

unsigned long currentMillis = millis(); 
 

// Accelerate or decelerate the left servo 
if (currentLeftSpeed < targetLeftSpeed) { 

currentLeftSpeed += step; 
} else if (currentLeftSpeed > targetRightSpeed) { 

currentLeftSpeed -= step; 
} 



 
// Accelerate or decelerate the right servo 
if (currentRightSpeed < targetLeftSpeed) { 

currentRightSpeed += step; 
} else if (currentRightSpeed > targetRightSpeed) { 

currentRightSpeed -= step; 
} 

 
// Update servo speeds 
_servoLeft.writeMicroseconds(1500 + currentLeftSpeed); 
_servoRight.writeMicroseconds(1500 + currentRightSpeed); 

 
// Wait for ms before the next change 
while (millis() - currentMillis < 10) { 
// Small delay to wait until ms has passed 
} 

} 
} 

 
The operation of the above code is explained below: 
 
currentLeftSpeed and currentRightSpeed are used to track the current speed of each servo. 
The while loop continues until the current speed matches the target speed for both servos. 
If statements determine whether to increase or decrease the speed. 
The millis() function is used for timing, allowing the speed to change every 10ms. Experimenting with 
time intervals between 10ms to 20ms, 20-50ms, and 50-100ms can help find the optimal value that 
satisfies both responsiveness and precision. 
 
 
(Note) ---------------------------------------------------------------------- 
What is the Blocking Code: 
The acceleration/deceleration code for wheels connected to servo motors, due to its nature of changing 
speed over time, especially when real-time sensor signal processing is required, presents a 
consideration. 
 
The example code's gradualServoSpeed(int targetLeftSpeed, int targetRightSpeed) method, while 
executing, prevents the program from performing any other tasks until it completes (i.e., until the servo 
motors reach the target speed). This effect is referred to as "blocking code." In single-threaded 
environments like Arduino, code blocking is a limiting factor, where the program cannot respond to 
sensor inputs, process other tasks, or perform concurrent operations during blocking conditions. If the 
Arduino robot needs to react in real-time (e.g., obstacle detection sensors), using blocking functions 
can be problematic since it cannot effectively process such inputs while the function is running. 
 
To address this issue, "state machine logic" or "timer interrupts or callbacks" can be used, allowing for 
"non-blocking code" that requires more complex setup. 
------------------------------------------------------------------------ 
 
The current example code is only applicable for the initial wheel movement from a stopped state to any 
arbitrary speed. However, if the wheel's speed continues to change, the current speed values need to 
be considered further. The code below applies the concept using current speed values as parameters 
(int currentLeftSpeed, int currentRightSpeed). 
 

void SelfAbot::gradualServoSpeed(int currentLeftSpeed, int currentRightSpeed, int targetLeftSpeed, 
int targetRightSpeed) { 

int step = 5; // Determine the step size for speed change 
 

while (currentLeftSpeed != targetLeftSpeed || currentRightSpeed != targetRightSpeed) { 
unsigned long currentMillis = millis(); 

 



// Accelerate or decelerate the left servo 
if (currentLeftSpeed < targetLeftSpeed) { 

currentLeftSpeed += step; 
} else if (currentLeftSpeed > targetLeftSpeed) { 

currentLeftSpeed -= step; 
} 

 
// Accelerate or decelerate the right servo 
if (currentRightSpeed < targetRightSpeed) { 

currentRightSpeed += step; 
} else if (currentRightSpeed > targetRightSpeed) { 

currentRightSpeed -= step; 
} 

 
// Update servo speeds 
_servoLeft.writeMicroseconds(1500 + currentLeftSpeed); 
_servoRight.writeMicroseconds(1500 + currentRightSpeed); 

 
// Wait for 5ms before the next change 
while (millis() - currentMillis < 5) { 
// Small delay to wait until 5ms has passed 
} 

} 
} 

 
Managing both the current and target speed values for two wheels can create inconvenience for the 
user. Therefore, once you start moving the servo motors, you can use a method to automatically store 
the current speed values in member variables. 
 
In the modified code, the previously introduced parameters can be encapsulated as member variables 
of the class and applied to the code. You can add the example code below to the 'SelfAbot' class and 
test it. 
 

class SelfAbot { 
private: 

int _currentLeftSpeed; // Current speed for left servo as a class member 
int _currentRightSpeed; // Current speed for right servo as a class member 

 
public: 

SelfAbot() : _currentLeftSpeed(0), _currentRightSpeed(0) { 
// Default constructor logic, if any 

} 
// Constructor with servo pin numbers 
SelfAbot(byte servoLeftPin, byte servoRightPin): _currentLeftSpeed(0), _currentRightSpeed(0) { 

attachServos(servoLeftPin, servoRightPin); 
} 
void gradualServoSpeed(int targetLeftSpeed, int targetRightSpeed); 

}; 
 
void SelfAbot::gradualServoSpeed(int targetLeftSpeed, int targetRightSpeed) { 

int step = 5; // Determine the step size for speed change 
while (_currentLeftSpeed != targetLeftSpeed || _currentRightSpeed != targetRightSpeed) { 

unsigned long currentMillis = millis(); 
// Accelerate or decelerate the left servo 
if (_currentLeftSpeed < targetLeftSpeed) { 

_currentLeftSpeed += step; 
} else if (_currentLeftSpeed > targetLeftSpeed) { 

_currentLeftSpeed -= step; 
} 



// Accelerate or decelerate the right servo 
if (_currentRightSpeed < targetRightSpeed) { 

_currentRightSpeed += step; 
} else if (_currentRightSpeed > targetRightSpeed) { 

_currentRightSpeed -= step; 
} 
// Update servo speeds 
_servoLeft.writeMicroseconds(1500 + _currentLeftSpeed); 
_servoRight.writeMicroseconds(1500 + _currentRightSpeed); 

 
// Wait for 10ms before the next change 
while (millis() - currentMillis < 10) { 
// Small delay to wait until 10ms has passed 
} 

} 
} 

 
The Arduino sketch below demonstrates how to use the gradualServoSpeed() function. Upload the 
sketch below to practice gradual speed changes. The current method for creating gradual speed 
changes increments the speed from 0 to 100 by 5, taking 10ms for each increase, thus taking 200ms 
to reach the target speed. Keep this in mind when operating the robot. To create different patterns of 
gradual servo speed changes, you can adjust the step intervals or modify the value of 10 in the while 
(millis() - currentMillis < 10) code to change the delay time. 
 
The gradualServoSpeed() function uses the global variables currentLeftSpeed and currentRightSpeed 
to store and use the current speed states, allowing for the robot's gradual speed changes. 
 
This method will be reintroduced as a practice example for gradual servo speed changes in class 
inheritance discussed in Chapter 8. 
 
Ex4.4_abot_gradual_speed.ino  
#include "SelfAbot.h" 
#define INVALID_PIN 255;  
 
const byte servoLeftPin = INVALID_PIN; 
const byte servoRightPin = INVALID_PIN; 
 
int currentLeftSpeed = 0; 
int currentRightSpeed = 0; 
 
SelfAbot abot(servoLeftPin, servoRightPin); 
 

void setup() { 
abot.setup(); 
abot.servoAttachPins(11, 10); 

} 
void loop() { 

gradualServoSpeed(100, -100); 
delay(2000); 
gradualServoSpeed(20, -20); 
delay(2000); 
gradualServoSpeed(-100, 100); 
delay(2000); 
gradualServoSpeed(0, 0); 
delay(2000); 

} 



void gradualServoSpeed(int targetLeftSpeed, int targetRightSpeed) { 
int step = 5; // Determine the step size for speed change 
while (currentLeftSpeed != targetLeftSpeed || currentRightSpeed != targetRightSpeed) { 

unsigned long currentMillis = millis(); 
// Accelerate or decelerate the left servo 
if (currentLeftSpeed < targetLeftSpeed) { 

currentLeftSpeed += step; 
} else if (currentLeftSpeed > targetLeftSpeed) { 

currentLeftSpeed -= step; 
} 
// Accelerate or decelerate the right servo 
if (currentRightSpeed < targetRightSpeed) { 

currentRightSpeed += step; 
} else if (currentRightSpeed > targetRightSpeed) { 

currentRightSpeed -= step; 
} 
// Update servo speeds 
abot(11, 10).servoSpeed(currentLeftSpeed, currentRightSpeed); 
// Wait for 10ms before the next change 
while (millis() - currentMillis < 10) { 

// Small delay to wait until 10ms has passed 
} 

} 
} 

 
 
(1) Robot Hardware Setup: 
Connect the robot's left/right servos to the designated pins (11 and 10) on the Arduino board. Ensure 
the Arduino board is properly powered and the servos are correctly aligned and mounted on the robot. 
 
(2) Sketch Upload: 
Connect the Arduino to your computer via USB. Upload the Ex4.4_abot_gradual_speed.ino sketch to 
the board using the Arduino IDE. 
 
(3) Arduino Robot Operation: 
Once the code is uploaded, and the 3-position switch is turned to position 2, the servos should start 
moving. Observe how the servo speed gradually increases from 0 to 100, maintains for 2 seconds, and 
then gradually decreases back to 0. The gradual increase and decrease in servo speed should make 
the robot's movements smoother. 
 
(4) Practice with Various Speeds and Durations: 
Modify the gradualServoSpeed parameters within the loop function to experiment with different speeds. 
Adjust the delay duration to allow the robot to move for longer periods or change directions. Observe 
how these changes affect the robot's movement and speed transitions. 
 
(5) Understanding the Code: 
Examine the gradualServoSpeed function to understand how gradual speed changes are implemented. 
Pay attention to the use of the while loop and how each servo's speed is adjusted in small steps (step 
variable) to reach the target speed. 
 
This practice scenario helps understand how to smoothly and controlledly adjust servo motor speeds, 
providing a foundation for creating more complex and subtle movements in robot projects. 
 
 
  



4.5 Additional Method: maneuver()  
 
The maneuver function is a method that takes servo motor movement speed values as parameters and 
adds duration as an additional parameter. Let's implement the maneuver() function used in the C 
language basics as a method. The previous maneuver() function moved two servo motors 
simultaneously and added a delay time as a parameter. 
 
The maneuver method below is slightly different from the maneuver() function used in the C language 
basics. Let's examine what differs. It can be added to a class for use or directly utilized in an .ino file. 
 

void SelfAbot::maneuver(int speedLeft, int speedRight, int msTime) { 
servoSpeed(speedLeft, speedRight); 
if (msTime == -1) { 

// Indefinite operation, servos remain engaged 
} else { 

delay(msTime); 
_servoLeft.detach(); 
_servoRight.detach(); 

} 
} 

 
The method for setting speed first involves setting the speed for both the left and right servos. This is 
achieved using the servoSpeed method of the SelfAbot class, which utilizes two speed values for each 
the left and right servo. 
 
The servo's delay time checks the msTime parameter: 
(1) If msTime is -1, the servo continues to operate indefinitely. This is useful for continuous operation 
without a predefined stop time. 
(2) If msTime has a different value, the method waits for that duration (using delay(msTime)) and then 
detaches the servo to stop it. This servo operation slightly differs from the maneuver() function 
introduced in the “Online Tutorial Manual” published long ago. 
 
The maneuver() function used in the 'Basics of C language' can be used to execute functions 
continuously, but the current code is suitable for executing the maneuver() function only once because 
it is written to automatically stop the servo after the scheduled time. The provided code executes the 
detach() function as a command to stop the servo, stopping the servo after the scheduled time. 
If you want to create continuous movement of the robot using the maneuver() function, you can modify 
the current code as shown in the example below and apply it. 
 
Ex4.5_abot_maneuver_speed.ino  
#include "SelfAbot.h" 
SelfAbot abot; // SelfAbot class instance generation 
 
void setup() { 

Serial.begin(9600); // serial communication begin 
abot.servoAttachPins(11, 10); // servo pin connect to 11, 10 

} 
void loop() { 

maneuver(100, -100, 200);  
delay(2000); // 2 seconds delay 

} 
void maneuver(int speedLeft, int speedRight, int msTime) { 

abot.servoSpeed(speedLeft, speedRight); 
if (msTime == -1) { 

// Indefinite operation, servos remain engaged 
} else { 

delay(msTime); 
} 

} 



Chapter 5 Phototransistor Light Signal: rcTime() 
 
5.1 Practice for Processing Analog Input Signals 
5.2 Digital Input Signal Method: rcTime() Method 
5.3 Recognizing Light Intensity with Two Phototransistors 
5.4 Arduino Robot Light Following Exercise 

 
 

 
 
 
 
This image represents the wavelength band of the Infrared (IR) sensor. The infrared light region consists 
of wavelengths that cannot be identified with the naked eye. The phototransistor used in the exercises 
of this chapter is most sensitive at a wavelength of 850nm, and the infrared sensor used in Chapter 6 
responds most sensitively at 980nm. 
 
 

 
 

Figure 5.1: The Colors of Visible Light and the Wavelength Bands of Invisible Light (Source: 
parallax.com) 
 
Analog and digital sensors are commonly used in robotics, each with unique characteristics and uses. 
Understanding the differences between these two types of sensors is crucial for effectively integrating 
them into robotic systems. 
 
Features of analog sensors include: 
- Analog sensors generate a continuous signal that represents physical measurements, with the signal 
varying across a continuous range. 



- The resolution of analog sensors is theoretically infinite, allowing for the measurement and 
representation of very small changes in the measured quantity. However, in practice, resolution is 
limited by noise levels and the precision of the analog-to-digital converter (ADC) used for signal 
digitization. 
- Analog sensors typically output a voltage proportional to the measurement, ranging between a 
minimum and maximum value (e.g., 0-5V). They are generally simpler and cheaper than digital sensors 
but may incur higher costs and complexity for signal processing, especially for high precision. 
- Analog signals are more susceptible to noise and interference, potentially degrading signal quality 
over long distances. Common examples include thermistors (temperature sensors), photodiodes (light 
sensors), and potentiometers (position sensors). 
 
Features of digital sensors: 
- Digital sensors typically generate discrete signals in a binary data format. The output is either high (1 
or HIGH) or low (0 or LOW) depending on various conditions of the measured parameter. 
- The resolution of digital sensors is limited by the number of bits of digital output. For example, a 10-
bit sensor can represent 2^10 (1024) discrete states. These sensors usually communicate using digital 
communication protocols like I2C, SPI, or UART. 
- Digital sensors are more complex and may be more expensive but often include signal processing 
capabilities for more accurate and stable readings. 
- Digital signals are less sensitive to noise than analog signals, enhancing the reliability of digital sensors 
in long-distance transmissions and electrically noisy environments. Examples include digital 
thermometers, infrared sensors, and digital accelerometers. 
 
 
5.1 Practice for Processing Analog Input Signals 
 
This section introduces an exercise from a C language Arduino robotics tutorial guide for displaying 
analog input signals on a screen. Connect the analog sensor input to Arduino pin A2 and practice with 
the code provided.  
 
Analog input signals tend not to be used directly for robot actuation due to reasons introduced below. 
The 'SelfAbot' library does not implement methods for processing analog input signals. Practice with 
the code that operates independently of the library.  
 

 
Figure 5.2: Phototransistor Symbol and Schematic (Source: parallax.com) 

 

 
 

Figure 5.3: Analog Signal Processing Circuit for Phototransistor Light Sensor 



It explains why analog signals are less often used as external input signals for robot actuation, with a 
tendency to prefer digital input signals for their advantages in terms of task specificity, precision, 
simplicity, and robustness against noise, leading to a preference for digital control. 
 
To process the analog signal of a phototransistor, connect it as shown in Figure 5.3. To adjust the 
sensitivity of the light sensor signal, change the size of the resistor value as illustrated in Figure 5.3. 
 
Ex5.1_phototransistor_analogReadvolts.ino  
int sensorPin = A2; 
 
void setup() { 

// abot.setup(); 
Serial.begin(9600); 

} 
 
void loop() { 

Serial.print("A2 = ");  
Serial.print(volts(A2));  
Serial.println(" volts");  
delay(1000); 

} 
 
float volts(int adpin) // Measures volts at adPin 
{ // Returns floating point voltage 

return float(analogRead(adpin)) * 5.0 / 1024.0; 
}  

 
(1) Precision and Noise: Analog signals can be more susceptible to noise and interference, potentially 
leading to less accurate or fluctuating readings. This can be a significant disadvantage in robotics, 
where precision and consistency are crucial. In contrast, digital signals are more resistant to noise. 
 
(2) Processing Complexity: Analog signals require conversion to digital values using Analog-to-Digital 
Converters (ADC) for processing. This conversion can add complexity and latency, especially in cases 
where high-resolution readings are needed. 
 
(3) Demand for Discrete Control: Many robotic functions, such as motor control, are inherently digital 
(on/off, forward/backward, stop/go). Using digital signals for these controls is simpler and more efficient. 
 
(4) Limited Analog Inputs: Arduino boards typically have a limited number of analog input pins compared 
to digital pins. In robotics, where many sensors and actuators can be used, the availability of digital pins 
makes complex designs more practical. 
 
(5) Standardization and Compatibility: Many robotic components, like servos, DC motors with drivers, 
and sensors, are designed to work with digital control signals. Using these standard components with 
analog signals may require additional circuits or conversion methods. 
 
(6) Variability with Power Supply Levels: Analog signals can vary with changes in the power supply 
voltage, potentially leading to inconsistent operation. Digital signals are less affected by these 
fluctuations, offering more stable operation. 
 
(7) Programming and Debugging Ease: Often, using digital signals can be easier in terms of 
programming and debugging. The binary nature of digital signals (high/low, true/false) aligns well with 
programming logic, making it simpler to implement control algorithms and troubleshoot issues. 
 
However, analog inputs may be more appropriate for sensors providing a continuous range of readings 
(e.g., temperature, luminosity, or distance sensors) or situations requiring gradual changes and fine 
control (e.g., controlling the position of a servo motor using a potentiometer). 
 
 



5.2 Digital Input Signal Method: rcTime() Method 
 
The earlier sections covered processing a phototransistor light sensor using an analog signal method. 
Now, it's time to introduce processing the same phototransistor light sensor using a digital signal method. 
 
Figure 5.4 shows how to combine a light sensor signal with an RC circuit to process digital signals. In 
the circuit shown in the figure, transitioning the digital pin's mode from HIGH to LOW creates an RC 
circuit.  

 
Figure 5.4: Circuit for Measuring Digital Signals Figure 5.5: Capacitor Symbol and Notation (Source: 
parallax.com) 

 
The below Ex5.2 .ino example code uses the 'SelfAbot' class's rcTime method to read digital input 
signals from two pins (8 and 9) of an Arduino. This method processes digital input signals using a 
common technique called RC time, an engineering concept of time constants, similar to reading analog-
like values from digital pins. 
 
Understanding RC Circuits 
An RC circuit is a basic electrical circuit made up of a resistor and a capacitor used together. When 
voltage is applied, the capacitor charges through the resistor. When the voltage is removed, the 
capacitor discharges. The time it takes to charge or discharge depends on the values of the resistor 
and capacitor. The time constant of an RC circuit, denoted by the Greek letter tau (τ), measures the 
time it takes for the voltage across the capacitor to charge to about 63.2% of its maximum value during 
charging or to decrease to about 36.8% during discharging, referred to as 1 tau. 
 
(Note) ------------------------------------------------ 
Understanding RC Time Constant 

 
The RC time constant represents how quickly a capacitor can charge or discharge through a resistor, 
forming a simple electrical circuit with components to limit or control the flow of current (R) and store 
electrical energy in an electric field (C). 
 
The time constant τ is calculated using the formula: 

τ = R × C 
where τ (tau) is the time constant in seconds, R is resistance in ohms (Ω), and C is capacitance in 
farads (F). 
--------------------------------------------------------------------------- 
 
This defines the time constant or tau as a relative representation of the total 100%, allowing the state 
of charging and discharging to be represented by the same time constant (e.g., 1 tau for 63.2% charging 
or 36.8% discharging) across any combination of components in an RC circuit, only the conversion time 
value for 1 tau changes based on the component combination. 
 
(1) Charging the Capacitor: When power is supplied to the circuit, the capacitor begins to charge 
through the resistor. 1 time constant (τ) is the time it takes for the voltage across the capacitor to reach 
about 63.2% of the supply voltage. 



 
(2) Discharging the Capacitor: When the circuit is disconnected from power, the capacitor begins to 
discharge through the resistor. Here, 1 τ is the time it takes for the capacitor's voltage to drop to about 
36.8% of its initial value. 
 
(3) 5 Time Constants: Generally, a capacitor is considered almost fully charged after about 5τ (five time 
constants) or almost fully discharged. 
 
Example Scenario 
Imagine an RC circuit with a 1000Ω (1kΩ) resistor and a 1μF capacitor. The time constant τ for this 
circuit would be: 
 

τ = 1000Ω × 1μF = 1000 × 10−6 seconds = 1 millisecond 
 
This means it takes 1 millisecond for the capacitor to charge to 63.2% of the supply voltage or discharge 
to 36.8% of its initial voltage. The time it takes to almost fully charge or discharge is about 5 milliseconds. 
 
Microcontroller Role 
An Arduino (or other microcontrollers) is used to control the charging and discharging processes and 
measure the time these processes take, representing the characteristics of the RC circuit. 
 
Executing abot.rcTime(8) in the code reads the delay time until the digitalRead value changes from 
High to Low state, processing the digital input signal based on a specific moment when the external 
input signal changes. For Arduino Uno, the microcontroller should recognize the threshold value for 
HIGH at 0.6 * VCC (5V) and for LOW at 0.3 * VCC (5V). In the RC circuit, starting from an initial 5V, as 
the voltage gradually decreases to a specific point where Arduino changes recognition from HIGH to 
LOW state, the code measures the time taken. 
 
Refer to Figure 5.4 for external circuit configuration. 
 
In implementing the rcTime() method below, function overloading was not used, based on the design 
principle that applies only to the pins moving the wheels. Subscribers conducting the experiment can 
add methods that use function overloading if desired. All sensor signal processing methods described 
later do not use function overloading. 
 
Introduction to the implementation content of the 'SelfAbot' class's rcTime() method: 
 

unsigned long SelfAbot::rcTime(byte pin) { 
pinMode(pin, OUTPUT); 
digitalWrite(pin, HIGH); 
delay(1);  
pinMode(pin, INPUT); 
digitalWrite(pin, LOW); 
unsigned long startTime = micros(); 
unsigned long elapsedTime = 0; 
while (digitalRead(pin) == HIGH) { 

elapsedTime = micros() - startTime; 
} 
return elapsedTime; 

} 
 

The 'rcTime' method in the 'SelfAbot' class measures the time it takes for the state of a digital input pin 
to change from HIGH to LOW. This method is commonly used to measure the charging or discharging 
time of a capacitor in an RC (resistor-capacitor) circuit. Breaking it down for easier understanding, the 
steps are as follows: 
 
 
 
 



Understanding the rcTime Method Step by Step: 
 
(1) Set pin mode to output: pinMode(pin, OUTPUT); 
This line configures the specified 'pin' as an output. To charge a capacitor in the RC circuit, you first 
need to set up the pin for output. 
 
(2) Set the pin to HIGH: digitalWrite(pin, HIGH); 
This line sends a HIGH signal (5V on most Arduino boards) to the pin, starting to charge the capacitor 
connected to that pin. 
 
(3) Short delay: delay(1); 
This introduces a brief pause to allow time for the capacitor to charge. This delay period can affect the 
charging time. 
 
(4) Switch the pin to input: pinMode(pin, INPUT); 
The pin is reconfigured as an input. This is done to measure the discharging time of the capacitor. 
 
(5) Ensure the pin is LOW: digitalWrite(pin, LOW); 
Even though the pin is set to input, this line is often used to ensure that the internal pull-up resistor is 
deactivated. It ensures that the pin is influenced only by the external circuit, not by Arduino. 
 
(6) Start timing: unsigned long startTime = micros(); 
This line records the start time using Arduino's internal function 'micros()', which provides the time in 
microseconds since the Arduino started running the current program. 
 
(7) Measure the time until the pin becomes LOW: 
The while loop while(digitalRead(pin) == HIGH) runs as long as the pin remains HIGH. Within the loop, 
elapsedTime = micros() - startTime; calculates the time elapsed since the start time. This effectively 
measures the time it takes for the capacitor to discharge through the resistor until the pin is indicated 
as LOW. 
 
(8) Return the elapsed time: return elapsedTime; 
Finally, this method returns the elapsed time in microseconds. This value represents a specific value of 
the RC time, characteristic of the specific RC circuit connected to the pin. 
 
The code below is an example that can use the rcTime method for detecting external signals. 
 
 

 
 

Figure 5.6: Mounting a Phototransistor Light Sensor on a Robot 
 
  



Ex5.2_phototransistor_rcTime.ino  
#include "SelfAbot.h" 
SelfAbot abot; 
 
void setup() { 

// abot.setup(); 
Serial.begin(9600); 

} 
void loop() { 

unsigned long rctimeValLeft = abot.rcTime(8);  
Serial.print("rcTime Left = "); 
Serial.print(rctimeValLeft); 
Serial.println(" us || "); 

 
unsigned long rctimeValRight = abot.rcTime(6);  
Serial.print("rcTime Right = "); 
Serial.print(rctimeValRight); 
Serial.println(" us");  
delay(500); 

} 
 
 
 

 
 
Figure 5.7: Sensor Output Value Changes When Exposed to External Light Versus When Not 
 
 
Figure 5.7 displays the change in output values of two light sensors when exposed to smartphone light, 
ambient fluorescent light, and when covered by hand to block external light. Compared to the analog 
input circuit method, the change in data width due to variations in external light is significantly larger. 
 



Advantages and Disadvantages of Digital Signal Processing Method: 
Advantages: 
(1) Simplicity: Utilizes the abundant digital I/O pins on Arduino boards compared to analog pins, offering 
a more varied approach for a broader range of applications. 
(2) No Need for ADC: Operates on digital pins, simplifying circuit design and coding without the need 
for analog-to-digital conversion (ADC). 
(3) Cost-Efficiency: Utilizing digital pins for analog-like readings eliminates the need for additional 
hardware like external ADCs, making it cost-effective. 
(4) Customizable Resolution: Timing and code logic manipulation allow for some degree of 
measurement resolution customization to specific application requirements. 
 
Disadvantages: 
(1) Lower Precision: Digital readings may lack accuracy, especially where wide sensor output ranges 
or high resolutions are needed, compared to actual analog readings. 
(2) Sensitivity to Noise: Digital signal processing can be more susceptible to electrical noise, affecting 
the accuracy of timing-based measurements. 
(3) Processor Time: Methods like rcTime can be processor-intensive, relying on loops to measure the 
time taken for pin state changes, potentially limiting the processor's ability to handle concurrent tasks. 
(4) Calibration and Consistency Issues: The accuracy of timing-based measurements can be affected 
by factors like temperature, voltage changes, or variances across different boards, making consistent 
and reliable calibration challenging. 
(5) Limited Application Scope: This approach may not suit all sensor types, especially those requiring 
very accurate and stable analog readings. 
 
 
5.3 Recognizing Light Intensity with Two Phototransistors 
 
Using two light sensors, it's possible to compare the intensity of light on the left and right sides. This 
method allows for differentiation between the darker and brighter sides. By integrating such sensor 
recognition with robot movement, code can be written to make the robot follow bright light or avoid it, 
moving towards darker areas. 
 
 

 
 

Figure 5.8: Arduino Robot Connected with Phototransistors (Source: parallax.com) 
 
The method of writing the coding example introduced in C language using the ‘SelfAbot’ class in C++ 
code is as follows. The code below reads the left light sensor signal using the abot.rcTime(8) method, 
and the right light sensor signal using the abot.rcTime(6) method, then normalizes it in the manner of: 
rctimeValLeft / (rctimeValLeft + rctimeValRight) - 0.5; This approach to normalizing sensor data 
simplifies further data processing and facilitates data visualization. 
  



Ex5.3_normalize_two_phototransistors.ino  
#include "SelfAbot.h" 
SelfAbot abot; 
 
void setup() { 

// abot.setup(); 
Serial.begin(9600); 

} 
void loop() { 

float rctimeValLeft = float(abot.rcTime(8));  
float rctimeValRight = float(abot.rcTime(6));  

 
float ndShade; 
ndShade = rctimeValLeft / (rctimeValLeft + rctimeValRight) - 0.5; 
for(int i = 0;i < (ndShade * 40) + 20; i++) { 

Serial.print(' '); 
} 
Serial.println('*'); 
delay(100); 

} 
 

 
 

Figure 5.9: Displaying the Difference in Light Between Two Phototransistors as a Serial Output Graph 
 
Refer to the following explanation for the example code introduced above: 
(1) Library and Object Initialization: 
 

#include "SelfAbot.h" 
SelfAbot abot; 

 
This includes the SelfAbot.h library to utilize the functionalities defined in the SelfAbot class. An abot 
object is created to control the robot. 
 
(2) setup() Function: 



void setup() { 
//abot.setup(); 
Serial.begin(9600); 

} 
 
Serial.begin(9600); is called to initiate serial communication, enabling data transmission and reception 
through the serial monitor. 
 
(3) loop() Function: 
 

void loop() { 
float rctimeValLeft = float(abot.rcTime(8)); 
float rctimeValRight = float(abot.rcTime(6)); 
... 

} 
 
The loop() function reads values from sensors connected to pins 8 and 6 using the rcTime method. 
rctimeValLeft and rctimeValRight store the read values from the left and right sensors, respectively. 
 
(4) Processing and Visualizing Sensor Values: 
 

float ndShade; 
ndShade = rctimeValLeft / (rctimeValLeft + rctimeValRight) - 0.5; 
for(int i = 0;i < (ndShade * 40) + 20; i++) { 

Serial.print(' '); 
} 
Serial.println('*'); 

 
ndShade is calculated based on the ratio of the two sensor values, representing the difference between 
them, with -0.5 subtracted to center the value. 
A for loop and Serial.print(' '); are used to output spaces on the serial monitor proportional to the 
ndShade value, visually representing the difference in sensor values. 
Serial.println('*'); prints an asterisk, indicating the position of the difference in sensor values. 
 
delay(100); adds a 100-millisecond delay between each iteration of the loop, preventing too rapid 
repetition of data reading and output. 
 
 
5.4 Arduino Robot Light Following Exercise 
 
This code demonstrates the process of detecting light intensity using phototransistor sensors, 
converting it into digital signals, and then changing the values of variables to operate servo motors. As 
previously explained, the normalized sensor data value ndShade varies between -0.5 and +0.5. If the 
ndShade value is negative, it indicates that the numerator value is relatively small, meaning the 
rctimeValLeft value is small, implying that the left side is brighter. 
 
When the robot is moving forward, adjusting the servo speed values of both wheels allows the robot to 
follow the light. If the left side is brighter, indicating a left turn, adjusting the left wheel's speed value 
lower than the right wheel's speed value fulfills this condition. The same principle applies to the servo 
motor on the right wheel if the opposite condition is met. 
 
Ex5.4_photoTr_rctime_serialprint.ino  

#include "SelfAbot.h" 
SelfAbot abot; 
 
void setup() { 

// abot.setup(); 
Serial.begin(9600); 

} 



void loop() { 
int leftSpeed, rightSpeed; 
float rctimeValLeft = float(abot.rcTime(8));  
float rctimeValRight = float(abot.rcTime(6));  

 
float ndShade; 
ndShade = rctimeValLeft / (rctimeValLeft + rctimeValRight) - 0.5; 

 
if (ndShade < 0.0) { 

leftSpeed = int(200.0 + (ndShade * 1000.0)); 
leftSpeed = constrain(leftSpeed, -200, 200); 
rightSpeed = 200; 

} else { 
rightSpeed = int(200.0 - (ndShade * 1000.0)); 
rightSpeed = constrain(rightSpeed, -200, 200); 
leftSpeed = 200; 

} 
Serial.print(leftSpeed, DEC); 
Serial.print(" "); 
Serial.print(ndShade, DEC); 
Serial.print(" "); 
Serial.println(rightSpeed, DEC); 
delay(1000); 

} 
 
The code below is intended to check, via Arduino's serial output, how the speed values required for the 
operation of the robot's servo motors change according to external light changes, before directly 
activating the servo motors. If the changes in values due to external light variations are deemed 
appropriate on the serial output screen, it is then acceptable to proceed to the code example that directly 
operates the servo motors. 
 

 
 
Figure 5.10: Serial output converting the difference in light sensor detection values into robot speed 
values 



 
If it is determined that the servo motor speed values are being generated correctly in the previous 
example, the code can be modified to make the robot operate according to the direction of light from 
the sensors. 
 
The principle of creating robot driving actions responsive to the direction of external light involves 
passing the values of the leftSpeed and rightSpeed variables as parameters to the robot's driving 
method. The method used to drive the robot using the library is servoSpeed(leftSpeed, -rightSpeed). 
Using the instance with the code allows for the creation of robot actions responsive to external light, 
introduced below as an example. 
 
 
Ex5.5_light_following_abot.ino  
#include "SelfAbot.h“ 
#define INVALID_PIN 255; 
const byte servoLeftPin = INVALID_PIN; 
const byte servoRightPin = INVALID_PIN; 
 
SelfAbot abot(servoLeftPin,servoRightPin); 
 
void setup() { 

abot.setup(); 
abot.servoAttachPins(11, 10); 
Serial.begin(9600); 

} 
 
void loop() { 

int leftSpeed, rightSpeed; 
float rctimeValLeft = float(abot.rcTime(8));  
float rctimeValRight = float(abot.rcTime(6));  

 
float ndShade; 
ndShade = rctimeValLeft / (rctimeValLeft + rctimeValRight) - 0.5; 

 
if (ndShade < 0.0) { 

leftSpeed = int(200.0 + (ndShade * 1000.0)); 
leftSpeed = constrain(leftSpeed, -200, 200); 
rightSpeed = 200; 

} else { 
rightSpeed = int(200.0 - (ndShade * 1000.0)); 
rightSpeed = constrain(rightSpeed, -200, 200); 
leftSpeed = 200; 

} 
abot(11, 10).servoSpeed(leftSpeed, -rightSpeed); 

} 

 
  



Chapter 6 Driving Robot with Infrared Sensors 
 
6.1 Infrared Sensor Signal Processing for Obstacle Detection 
6.2 Integrating Infrared Sensor Signals into the Robot 
6.3 Using the irDistance Method with Infrared Sensors 
6.4 Scanning Surrounding Objects with Infrared Sensors 
6.5 Finding Nearby Objects by Scanning with Infrared Sensors 

 
 

 
 
 
 

Infrared (IR) sensors are an excellent subject for students to learn how to connect sensors to an Arduino 
robot and read output data. Especially since IR sensors can produce both digital and analog signals, 
as explained in previous sections, they enable a variety of experimental experiences. 
 
This chapter introduces methods for handling detection signals in infrared transmission and reception 
modes. It also introduces the principle of detecting objects in front of the robot using this method. 
Through projects utilizing IR sensors, it's hoped that students will understand and learn 'how robots 
interact with their environment,' a core concept in fields like robotics and automation. 
  



6.1 Infrared Sensor Signal Processing for Obstacle Detection  
 
The IR sensor introduced in Figure 6.1 is composed of a transmitting LED and a receiving receiver 
component. Different from the phototransistor components used in previous sections, the IR LED with 
housing is used to enhance the directivity of the infrared light. The method of connecting the IR sensor 
transmitter and receiver components to Arduino pins is to follow the circuit diagram below. 
 
 

      
 

Figure 6.1: IR Transmitter and Receiver Sensor Circuit and Component Overview (Source: parallax.com) 
 
This is a method from the 'SelfAbot' class for detecting IR sensor signals. First, the method irDetect for 
reading the IR sensor is introduced and explained. 
 

int SelfAbot::irDetect(byte irLedPin, byte irReceiverPin, int frequency) { 
_irLedPin = irLedPin; 
_irReceiverPin = irReceiverPin; 

 
pinMode(_irLedPin, OUTPUT); 
pinMode(_irReceiverPin, INPUT); 

 
tone(_irLedPin, frequency, 8);  
delay(1); 
int _lastReadValue_ir = ::digitalRead(_irReceiverPin); 
delay(1); 

 
return _lastReadValue_ir; 

} 
 
(1) Function Declaration 
int SelfAbot::irDetect(byte irLedPin, byte irReceiverPin, int frequency) defines the member function 
irDetect in the SelfAbot class. The function takes three parameters: irLedPin, irReceiverPin, and 
frequency. 
 
(2) Variable Assignment 
_irLedPin = irLedPin; and _irReceiverPin = irReceiverPin; These lines of code assign the pin numbers 
passed to the function to the class's internal variables. 
 
(3) Pin Mode Setting 
pinMode(_irLedPin, OUTPUT); and pinMode(_irReceiverPin, INPUT); The pinMode function sets the 
pins to input or output mode. Here, _irLedPin is set to output (used to send signals to the infrared LED), 
and _irReceiverPin is set to input (used to read signals from the infrared receiver). 
 
(4) Infrared Signal Generation 
tone(_irLedPin, frequency, 8); The tone function generates an infrared signal at the specified frequency 
on _irLedPin. This signal lasts for a certain duration (here, 8). 
 
(5) Sensor Reading and Return 



int _lastReadValue_ir = ::digitalRead(_irReceiverPin); 
The digitalRead function reads the digital signal at _irReceiverPin and stores it in the _lastReadValue_ir 
variable. This represents the value detected by the IR receiver. 
return _lastReadValue_ir; Returns the value of the _lastReadValue_ir variable for return. 
 
To use the irDetect() method, refer to the figure below to install the sensor components. 
 

 
Figure 6.2: Sensor Exploration Direction and Circuit Diagram for Autonomous Arduino Robot 
 

 

 
 

Figure 6.3: Arduino Robot Equipped with Infrared Sensor 
 
The usage of infrared sensors on the Arduino robot as shown in Figure 6.2 involves independently 
detecting and processing signals from objects in the left and right front directions. The sensors are 
uniquely positioned to face more towards the left and more towards the right from the center. 
 
The following example sketch utilizes the infrared detection methods of the ‘SelfAbot’ class to process 
the signals from the infrared sensors mounted on the robot. 
 
This method of using sensors is identical to the content described in the online tutorial ‘Playing with 
Arduino Robot’ distributed for C language education. Try achieving the same practical effects using the 
‘SelfAbot’ written in C++ language. Running this code will allow you to display the values of both the 
left and right infrared sensors on the screen. 
 
 
Ex6.1_sensor_irdetect.ino  

#include "SelfAbot.h" 
SelfAbot abot; 
 
void setup() { 
Serial.begin(9600); 
abot.setup(); 



} 
 
void loop() { 
int irLeft = abot.irDetect(9, 10, 38000); // left IR sensor data read 
int irRight = abot.irDetect(2, 3, 38000); // right IR sensor data read 
Serial.print("Left IR: "); 
Serial.print(irLeft); 
Serial.print(" || Right IR: "); 
Serial.println(irRight); 
delay(10); 
} 

 
 
 

 
 

Figure 6.4: Digital output screen of the left and right infrared transmitter and receiver sensors 
 
Observe how the sensor signal output changes when there is an obstacle in front of the sensor and 
when there isn't. If the code works well up to this point, you can implement autonomous driving by 
connecting the infrared sensor signals to the operation of the Arduino robot's wheels on both sides. 
 
The serial output screen in Figure 6.4 displays ‘1’ when no object is detected in front and ‘0’ when an 
object is detected. Within the sensor's sensitivity range, it's a simple object detection principle where 
the sensor recognizes an object or doesn't. To extend or shorten the distance at which the sensor 
detects objects in front, you can change the size of the resistor in the sensor circuit shown in Figure 6.2. 
 
 

 
6.2 Integrating Infrared Sensor Signals into the Robot 
 
Here is an example of autonomous driving code that recognizes obstacles in front with an infrared 
sensor and avoids objects by driving around them. The presented code makes the robot reverse if a ‘0’ 
signal, indicating an object is detected, is received from both infrared sensors. If only the left infrared 
sensor detects an object, the robot turns right, and if only the right infrared sensor detects an object, 
the robot turns left. Of course, if no objects are detected by either of the infrared sensors, it moves 
forward. This principle is applied in the example code introduced. 
 
Let’s compare two approaches to programming robot movements based on infrared (IR) sensor 
readings: using 'if-else' statements and using 'switch' statements. First, I’ll explain using if-else 
statements and then show how to implement the same logic using switch statements. 
 

int irLeft = abot.irDetect(9, 10, 38000); // Reading data from the left IR sensor 
int irRight = abot.irDetect(2, 3, 38000); //Reading data from the right IR sensor 
 



if ((irLeft == 0) && (irRight == 0)) { // no obstacle 
abot(13, 12).servoSpeed(-100, -100); 
delay(20); 

} else if ((irLeft == 0) && (irRight == 1)) { // left detect 
abot(13, 12).servoSpeed(-100, 100); 
delay(1000); 

 
abot(13, 12).servoSpeed(100, 0); 
delay(400); 

} else if ((irLeft == 1) && (irRight == 0)) { // right detect 
abot(13, 12).servoSpeed(-100, 100); 
delay(1000); 

 
abot(13, 12).servoSpeed(0, -100); 
delay(400); 

} else { // both detect 
abot(13, 12).servoSpeed(-100, 100); 
delay(1000); 

 
abot(13, 12).servoSpeed(100, 0); 
delay(800); 

} 
 
The if-else structure works by checking each condition sequentially. The movement of the robot is 
determined by the combination of 'irLeft' and 'irRight' sensor values. The advantage of this method is 
that it's easy for beginners to understand and is straightforward, clearly showing the logic combination 
of each sensor value. However, as the number of conditions increases, the 'if-else' statements can 
become lengthy and more challenging to manage. 
Let's consider changing to a 'switch' statement for the same robot movement control effect. 
 
To convert if statements to a 'switch' statement, additional steps are required. First, use the 
combinedState variable to combine irLeft and irRight into a single 2-byte value. Then, the switch 
statement selects operations based on this combined value. 
 
Ex6.2_irdetect_navigation_abot_switch.ino  

#include "SelfAbot.h" 
#define INVALID_PIN 255; 
 
const byte servoLeftPin = INVALID_PIN; 
const byte servoRightPin = INVALID_PIN; 
 
SelfAbot abot(servoLeftPin, servoRightPin); 
 
void setup() { 

//Serial.begin(9600); 
abot.setup(); 
abot.servoAttachPins(13, 12); 

} 
 
void loop() { 

int irLeft = abot.irDetect(9, 10, 38000); // left IR sensor data read 
int irRight = abot.irDetect(2, 3, 38000); // right IR sensor data read 
int combinedState = (irLeft << 1) | irRight;  

 
switch (combinedState) { 

case 0: // Both sensors detect no obstacle 
abot(13, 12).servoSpeed(100, -100); 
break; 

case 1: // irLeft = 0, irRight = 1 left obstacle 



abot(13, 12).servoSpeed(-100, 100); 
delay(1000); 
abot(13, 12).servoSpeed(100, 0); 
delay(400); 
break; 

case 2: // irLeft = 1, irRight = 0 right obstacle 
abot(13, 12).servoSpeed(-100, 100); 
delay(1000); 
abot(13, 12).servoSpeed(0, -100); 
delay(400); 
break; 

case 3: // Both sensors detect an obstacle 
abot(13, 12).servoSpeed(-100, 100); 
delay(1000); 
abot(13, 12).servoSpeed(100, 0); 
delay(800); 
break; 

} 
delay(20); 

} 
 
 
In this code, combinedState represents a value that indicates the states of both irLeft and irRight. It is 
created by shifting the irLeft value left by 1 bit and then performing a bitwise OR with irRight. In this way, 
each possible combination of 'irLeft' and 'irRight' values (00, 01, 10, 11) is represented by a unique 
'combinedState' value (0, 1, 2, 3). 
 
The advantage of this approach is that the switch statement can be more concise and easier to read, 
especially when there are many conditions. Additionally, it is generally more efficient in execution. 
However, for beginners, understanding how the combinedState is calculated can be somewhat complex. 
 
Explanation for Beginners 
Which method to choose? Both methods are valid, but the choice depends on the situation and what 
you are comfortable with. 'If-else' is simpler, while 'switch' can be more efficient and tidy when dealing 
with multiple conditions. 
Adding to the logical understanding, regardless of the method, understanding the logic behind the 
sensor readings and the corresponding actions is crucial. Both methods require practice, and it's 
important to implement both in projects to see which one you prefer in various situations. When starting 
to code, begin with simple logic and gradually add complexity as you become familiar with the syntax 
and concepts. Remember, the best way to learn programming is by doing it yourself. Experiment with 
both methods and see which works best in different scenarios. 
 
 
  



6.3 Using the irDistance Method with Infrared Sensors 
 
Looking at the operational characteristics of the infrared sensor by frequency in Figure 6.4, it shows the 
highest sensitivity at 38000 Hz. Moreover, the sensitivity shows almost linearly decreasing 
characteristics at frequencies higher or lower than 38000 Hz. Observing the sensitivity characteristics 
to frequency in Figure 6.5, linear characteristics are presented in the range of 38000 ~ 42000 Hz, 
indicating that this linearity can be easily converted for use in measuring the distance to an object. 
 

 
 

Figure 6.5: Frequency Characteristics Graph of the Infrared Sensor (Panasonic PNA4602M) 
 
The principle of measuring the distance to an object using the frequency scanning method is that the 
further the distance to the object, it is detected only under the condition of 38000 Hz, and the closer the 
distance to the object, it can detect the object up to the frequency of 42000 Hz. The irDistance method 
introduced below differentiates the relative distance to an object by scanning frequencies and summing 
up the detection signals for each frequency. 
 
 

 
 

Figure 6.6: Principle of irDistance() for Distance Measurement by Frequency (Source: parallax.com) 
 
 
The irDistance method of the 'SelfAbot' class can measure the distance to an object. Logic has been 
added to use the previously introduced irDetect method to measure the distance to an object. 
 

int SelfAbot::irDistance(byte irLedPin, byte irReceivePin) { 
int distance = 0; 
for(long f = 38000; f <= 42000; f += 500) { 

distance += irDetect(irLedPin, irReceivePin, f);  
} 
return distance; 

} 
 



(1) Function Declaration 
int SelfAbot::irDistance(byte irLedPin, byte irReceivePin): This is a method of the 'SelfAbot' class. The 
method utilizes two parameters: 'irLedPin' and 'irReceivePin', which are the pin numbers connected to 
the IR LED and receiver on the microcontroller. This method returns an integer value representing the 
measured distance. 
 
(2) Distance Variable Initialization 
int distance = 0; This line initializes the distance variable to ‘0’. This variable is used to accumulate the 
distance values measured at various frequencies. 
 
(3) Frequency Scan for Distance Measurement 
for(long f = 38000; f <= 42000; f += 500) { ... } This is a for loop iterating over a range of frequencies, 
starting from 38000Hz, increasing by 500Hz each time, and stopping at 42000Hz. These frequencies 
are used to transmit and measure the IR signal reflections. The scan range of frequencies depends on 
the characteristics of the infrared sensor being used, indicating its sensitivity. 
 
(4) Measuring Distance 
distance += irDetect(irLedPin, irReceivePin, f); Inside the loop, the irDetect function is called with the 
current frequency f. The 'irDetect' method sends an IR signal using 'irLedPin', receives it with 
'irReceivePin', and measures the distance, summing up all occurrences where the output is ‘1’. This 
value is then recorded in the distance variable. 
 
(5) Return Total Measured Distance 
After completing the loop, the accumulated total distance is returned. This value represents the 
outcomes of readings from all different frequencies, akin to the basic concept of radar. 
 
Instead of just processing digital output signals to determine if an object is present with infrared sensors, 
the irDistance() method measures the distance to an object ahead. A sketch example that uses the 
irDistance() method for this purpose is introduced. To detect an object using two sensors, align the 
sensors' direction of focus towards a hypothetical object as shown in the diagram below. 
 
The sketch results allow us to determine the spatial area between the closest distance at which object 
detection starts and the furthest distance at which it can detect, by observing the execution results of 
the sketch below. We can place a hypothetical object within the expected detection area and see if the 
robot scans and correctly perceives it. 
 

 
 

Figure 6.7: Schematic for Scanning Distance to an Object Ahead with Infrared Sensors 
 
 
Concept Understanding for Beginners 
The 'irDistance' feature acts like a tool that can measure distance by observing how IR light reacts at 
various frequencies. 
 
The for loop is akin to conducting a series of experiments with slightly different settings (different 
frequencies) each time to gain a comprehensive understanding. Summing up all these measurements 
(distance += irDetect(...)) makes the overall distance measurement more stable and accurate. Finally, 
the function returns this total distance value. This method, using changes in IR signal response at 



different frequencies depending on the measured distance, is a simple yet effective way to detect 
obstacles or for navigation purposes in robotics. Test your Arduino code to measure the distance to an 
object with the 'SelfAbot' class's irDistance method. 
 
Ex6.3_irdistance_serialprint.ino  
#include "SelfAbot.h" 
SelfAbot abot; 
 
void setup() { 

Serial.begin(9600); 
abot.setup(); 

} 
 
void loop() { 

byte irLeftled = 9; 
byte irLeftreceiver = 10; 
byte irRightled = 2; 
byte irRightreceiver = 3; 
int irDistLeft = abot.irDistance(irLeftled, irLeftreceiver);  
int irDistRight = abot.irDistance(irRightled, irRightreceiver);  

 
Serial.print("Left IR: "); 
Serial.print(irDistLeft); 
Serial.print(" || Right IR: "); 
Serial.println(irDistRight); 
delay(50); 

} 
 
 

 
 

Figure 6.8: Serial Output for Distance Measurement with Infrared Sensors 
 
 
In Figure 6.8, an output value of ‘9’ indicates that the object is not detected even at the most sensitive 
frequency condition of 38,000 Hz, indicating a far distance. An output of ‘0’ means the object is detected 
even at the least sensitive frequency of 42,000 Hz, indicating close proximity. 
 



6.4 Scanning Surrounding Objects with Infrared Sensors 
 
We will use two infrared sensors to measure the distance of objects in front of the robot, similar to 
implementing a radar system with infrared sensors. Using multiple sensors introduces various 
considerations, especially when sensors vary in type and quantity. Below are some methods to consider 
when integrating sensor data. The choice of method often depends on the specific requirements of the 
application, the characteristics of the data, and environmental conditions. 
 
(Note) ---------------------------------------------------------------- 
Various Methods for Integrating Sensor Data: 
(1) Weighted Average 
Explanation: Assign different weights to each sensor's readings based on reliability or accuracy. For 
example, if one sensor is known to be more accurate at a certain distance, it can be given more weight. 
Applications: Useful when sensor performance varies under different conditions. 
 
(2) Median Filtering 
Explanation: Instead of calculating an average, the median value of a set of readings is used. This 
method is particularly effective in reducing the impact of outliers or sporadic false readings. 
Applications: Ideal for environments with high sensor noise levels or where sudden and incorrect 
readings are common. 
 
(3) Mode Filtering 
Explanation: Use the most frequently occurring value from a set of readings. This method can be useful 
when a consistent repeating value indicates stable measurements. 
Applications: Useful in scenarios where sensors need to return repetitive distance readings. 
 
(4) Kalman Filtering 
Explanation: An advanced method that uses a series of measurements observed over time, including 
statistical noise and other inaccuracies, to produce estimates of unknown variables. 
Applications: Widely used in applications needing real-time data processing, such as tracking and 
navigation systems. 
 
(5) Sensor Fusion Algorithms 
Explanation: Combine data from multiple sensors to increase accuracy and reduce uncertainty. This 
can be done using various algorithms, including Bayesian networks, machine learning models, or simple 
logical rules. 
Applications: Effective in complex systems that measure different aspects of the environment with 
multiple sensors. 
 
(6) Regression Analysis 
Explanation: Fit a regression model to sensor data to predict values. This method can be used to identify 
relationships between readings from different sensors. 
Applications: Useful when sensor readings are expected to follow a specific trend or pattern. 
 
(7) Data Smoothing Techniques 
Explanation: Apply smoothing techniques like moving average, exponential smoothing, or low-pass 
filters to reduce data noise and fluctuations. 
Applications: Suitable for applications where data is expected to change gradually over time. 
 
(8) Decision Trees or Rule-Based Systems 
Explanation: Implement decision trees or rule-based systems that use sensor data to make decisions 
or classifications. 
Applications: Useful in automated systems that need to make decisions based on sensor readings. 
---------------------------------------------------------------------------- 
 
Introducing a method to detect objects in front of the robot using two installed infrared sensors. Instead 
of using the two sensors separately for left and right object detection, they will be used together to 
detect a single object. Arithmetic mean can be used for data from two sensors. 
 



For two sensors to act as one, several considerations must be addressed: 
(1) Field of View: If both sensors have similar fields of view and target the same object, averaging can 
help mitigate random errors or noise in individual sensor readings. Efficiency varies with the distance 
to the target and the angle at which sensors are mounted. Sensors should be positioned to ensure the 
most accurate readings at the desired point. 
 
(2) Sensor Alignment: Both sensors must be aligned to target the same area or object. Misalignment 
can lead to inaccurate readings. Effective averaging requires aligning the sensors' views to converge 
on the point of interest. Accurate placement and orientation of sensors are necessary. 
 
(3) Consistent Environmental Conditions: IR sensors can be affected by ambient light, surface 
reflectivity, temperature, etc., so both sensors must operate under the same environmental conditions. 
 
(4) Overlapping Detection Range: In applications like obstacle detection, if there is overlap in the 
sensors' coverage, averaging can provide a more reliable estimate of the central distance. 
 
To scan objects in front of the robot with fixed sensors, the robot must rotate in place. A method 
to rotate the robot in place for 360 degrees is introduced, along with considerations for calibrating the 
rotation angle and duration for accurate movement. 
 

void rotateRobot(int angle) { 
float factor = 10.0; 
int duration = (int)(angle * factor); 

 
abot.servoSpeed(100, 100); // Adjust speed as needed 
delay(duration); 

 
abot.servoSpeed(0, 0); 

} 
 
To match the duration of the robot's rotation with the angle of rotation in place, an experimental 
coefficient (here referred to as a factor) must be found. This factor can vary slightly for each robot. Here 
are some tips for finding the factor value: 
 
(1) Test Setup: Rotate the robot 360 degrees and measure the time it takes. If the robot takes 2000 
milliseconds (2 seconds) to complete a 360-degree rotation, the factor would be 2000 / 360 ≈ 5.56. 
Therefore, the robot should rotate approximately 5.56 milliseconds per degree. The factor value '10.0' 
applied in the code should be replaced with the experimentally determined '5.56'. 
 
Alternatively, you can repeatedly test to find the optimal factor value for a 360-degree rotation only. For 
example, if the servoSpeed speed value of the robot is 100, the factor might be around 5, but for a 
speed of 40, the factor could be about 10. 
 
(2) Adjustment and Measurement: Change the rotation time until the robot rotates as close to 360 
degrees as possible. Record the time it takes for this rotation. 
 
(3) Calculate and Apply the Coefficient: Divide the time in milliseconds by 360 to calculate the coefficient 
(time per degree of rotation). 
 
Introducing a sketch code for calibrating the factor value during the robot's rotation in place. Please 
upload the example below and perform the optimal calibration first. The result of this code ensures that 
when the robot is intended to rotate in place by a specified angle as a parameter, it does so accurately. 
 
The speed at which the robot rotates must be kept constant while adjusting the factor value. If the 
rotation speed changes, the optimal factor value found before the change will no longer be valid. When 
calibrating with AA batteries, if servoSpeed(40, 40) is used, the factor value is approximately 10. 
 
 
 



Upload the Ex6.4_rotateRobot_in_place.ino sketch and perform the in-place rotation calibration. 
#include "SelfAbot.h" 
#define INVALID_PIN 255; 
const byte servoLeftPin = INVALID_PIN; 
const byte servoRightPin = INVALID_PIN; 
 
SelfAbot abot(servoLeftPin, servoRightPin); 
float factor = 10.5; // Factor to convert angle to duration 
 
void setup() { 

abot.setup(); 
abot.servoAttachPins(13, 12); 
rotateRobot(360); 

} 
 
void loop() { 

// put your main code here, to run repeatedly: 
} 
 
// The rotateRobot function 
void rotateRobot(int angle) { 

int duration = (int)(angle * factor); 
abot.servoSpeed(40, 40); // Adjust speed as needed 
delay(duration); 
abot.servoSpeed(0, 0); // Stop the robot after rotating 

} 
 
If the calibration of the robot's in-place rotation factor value has been completed, upload the code below 
to the Arduino to test how accurately it can detect objects around it. 
 
Ex6.5_irdistance_point_rotation.ino  
#include "SelfAbot.h" 
#define INVALID_PIN 255; 
const byte servoLeftPin = INVALID_PIN; 
const byte servoRightPin = INVALID_PIN; 
 
SelfAbot abot(servoLeftPin, servoRightPin); 
float factor = 10.5; // Factor to convert angle to duration 
 
void setup() { 

Serial.begin(9600); 
abot.setup(); 
abot.servoAttachPins(13, 12); 

 
byte irLeftled = 9; 
byte irLeftreceiver = 10; 
byte irRightled = 2; 
byte irRightreceiver = 3; 

 
for (int angle = 0; angle < 180; angle += 10){ 

rotateRobot(10); 
 

int irDistLeft = abot.irDistance(irLeftled, irLeftreceiver);  
int irDistRight = abot.irDistance(irRightled, irRightreceiver);  
int averageDistance = (irDistLeft + irDistRight) / 2; 

 
Serial.print("Angle: "); 
Serial.print(angle); 



Serial.print(" | Average Distance: "); 
Serial.println(averageDistance); 
delay(10); 

} 
} 
 
void loop() { 
 
} 
 
// The rotateRobot function 
 
void rotateRobot(int angle) { 

int duration = (int)(angle * factor); 
abot.servoSpeed(40, 40); // Adjust speed as needed 
delay(duration); 
abot.servoSpeed(0, 0); // Stop the robot after rotating 

} 
 
 
The code introduced can be utilized in a scanning mode to survey the robot's surroundings while 
stationary. It rotates in place from 0 to 180 degrees in increments of 10 degrees to detect objects, and 
the process is repeated by the loop circuit. While there is the inconvenience of needing to use a USB 
cable since data is not transmitted wirelessly, it is hoped that this principle of searching for objects in 
front can be helpful in understanding. 
 
Try using infrared sensors to implement how far you can judge the perspective of objects surrounding 
you. Place various types of objects around, large and small, far and near, and feel for yourself the 
objects identified by the robot. Through such work, you can create better robot actions. 
 
 
6.5 Finding Nearby Objects by Scanning with Infrared Sensors 
 
Until now, the operation of the Arduino robot has used only one mode of constant speed. And like using 
two infrared sensors in radar search mode, we will process data using the arithmetic mean method. 
Under these conditions, if the Arduino robot detects an object in front while advancing, it can stop its 
progress at that moment, switch to radar search mode, and then find and turn in the direction where 
objects are furthest away or absent and continue driving. 
 
The following example introduces detecting objects placed between 0 ~ 180 degrees angles by the 
sensor and finding the direction of the closest object by the robot. Or it is a program that uses the robot 
to scan the surrounding environment and rotate the robot in the direction that detects the nearest object. 
The code is composed of several main parts, including robot setup, environmental scanning, and robot 
rotation control. 
 
Example code will skip explanations on robot setup and sensor initialization and focus on the principle 
of finding objects with sensors and robot rotation. 
 
(1) If an object is detected, the sensor value decreases, and the minimum value should be ‘0’. Therefore, 
the distance variable is initialized to the maximum value of 10, and the directionOfDistance variable is 
initialized to 0. 
 
(2) The robot uses the infrared sensor to measure distance in each direction, increasing by 10° from 0° 
to 180°, using the in-place rotation method. If you wish to make the rotation angles denser, you can 
reflect smaller values in the increment of the loop and the parameters of the rotateRobot() function used 
to rotate the robot. 
 
This code calculates the average distance obtained for each direction, and if this average distance is 
smaller than the currently detected minimum distance, the distance and direction are stored in variables. 



 
(3) After all scans are completed, the setTravelDirection function is used to rotate the robot in the 
direction where the closest object was detected. 
The function to rotate the robot in place is the rotateRobot() function, which can rotate in positive or 
negative angles. The setTravelDirection function is used to rotate the robot in the direction where the 
closest object was detected. 
 
Ex6.6_irscan_to_findObject.ino  

#include "SelfAbot.h" 
#define INVALID_PIN 255; 
const byte servoLeftPin = INVALID_PIN; 
const byte servoRightPin = INVALID_PIN; 
 
SelfAbot abot(servoLeftPin, servoRightPin); 
float factor = 10.5; 
 
void setup() { 
abot.setup(); 
abot.servoAttachPins(13, 12); 
 
byte irLeftled = 9; 
byte irLeftreceiver = 10; 
byte irRightled = 2; 
byte irRightreceiver = 3; 
 
int distance = 10; 
int directionOfdistance = 0; 
 
for (int angle = 0; angle <= 180; angle += 10) { 
rotateRobot(10); 
 
int irDistLeft = abot.irDistance(irLeftled, irLeftreceiver); 
int irDistRight = abot.irDistance(irRightled, irRightreceiver); 
int averageDistance = (irDistLeft + irDistRight) / 2; 
 
if (averageDistance < distance) { 
distance = averageDistance; 
directionOfdistance = angle; 
} 
 
delay(100); 
} 
// Set robot's direction to the direction of max distance 
setTravelDirection(directionOfdistance); 
} 
 
void loop() { 
 
} 
 
void rotateRobot(int angle) { 

if (angle >= 0) { 
int duration = (int)(angle * factor); 
abot.servoSpeed(40, 40); 
delay(duration); 
abot.servoSpeed(0, 0); 

} else { // reverse rotate 
int duration = (int)(abs(angle) * factor); 
abot.servoSpeed(-40, -40); 



delay(duration); 
abot.servoSpeed(0, 0); 

} 
} 
 
void setTravelDirection(int angle) { 

// Rotate the robot to the desired direction 
rotateRobot(angle-180); 

} 
 

  



Chapter 7 Arduino Robot Equipped with Ultrasonic Sensor 
 
7.1 Processing Ultrasonic Sensor Signals 
7.2 Displaying the Radar Screen for Objects Ahead 
7.3 Driving with an Ultrasonic Sensor Robot 

 
 
 

 
 
 
 

 
In this chapter, the goal is to utilize Arduino's standard function, pulseIn(). In addition to the pulseIn() 
method, the ‘SelfAbot’ class also defines a pulseOut() method and a pulseCount() method. 
 
This section explains how to operate ultrasonic sensors in a slightly different manner than the 
phototransistor light sensors and infrared transceiver sensors discussed in previous chapters. 
 
Both light sensors and ultrasonic sensors are commonly used to detect obstacles and measure 
distances to objects. Here, we compare the features of ultrasonic sensors, which utilize "ultrasound" 
sound waves, and infrared sensors, which utilize the wavelength of "infrared" light, in Tables 7.1 and 
7.2. Let's briefly compare these two types of sensors and explore handling ultrasonic sensor signals. 
  



Table 7.1 Comparison of Various Features of Ultrasonic and Infrared Sensors 

 Ultrasonic Sensor Infrared Sensor 

Principle 
Emits ultrasound waves (frequencies higher than 
human hearing) and measures the time it takes 
for the echo to bounce back from an object. 

Uses infrared light to detect objects. Some measure 
the intensity of reflected light, while others (e.g., IR 
distance sensors) measure the angle or time of 
reflected light to determine distance. 

Components Typically consists of a transmitter (ultrasound 
emission) and a receiver (echo reception). 

Includes an IR transmitter (typically an LED) and an 
IR receiver (e.g., photodiode). 

Measurement 
Range 

Can measure longer distances compared to IR 
sensors, typically from several centimeters to 
meters. Sound waves can travel farther than IR 
light waves. 

Typically limited to shorter distances (often up to a 
few meters) and greatly varies with object reflectivity 
and environmental lighting conditions. IR light 
decreases more rapidly with distance than sound 
waves. 

Accuracy 
Can be very accurate but decreases with 
distance. Accuracy is also affected by the surface 
material and angle of the object. 

Generally accurate at short distances but can be 
affected by the color and reflectivity of the object. 
Darker colors absorb more IR light, reducing reading 
accuracy. 

Environmental 
Factors 

Less affected by lighting conditions but can be 
influenced by temperature and wind. Soft 
materials or angular surfaces can absorb sound 
waves, leading to inaccurate readings. 

Affected by ambient light, especially sunlight, which 
can interfere with the IR signal. Dust or fog can 
scatter IR light, requiring a clear IR path. 

Application 
Areas 

Commonly used in robot obstacle avoidance, 
tank level sensing, vehicle parking sensors, etc., 
where accurate distance measurement is 
required. Suitable for both indoor and outdoor 
applications, but performance may vary with 
environmental conditions. 

Widely used for proximity detection, line-following 
robots, object detection/counting, TV remotes, and 
automatic faucets. Sensitive to sunlight and external 
light sources, so primarily used in indoor applications 
or controlled environments. 

 
(Note) ------------------------------------------------------------------- 
The Constant Trigger Signal and Variable Echo Signal of Ultrasonic Signals 
The key to ultrasonic signal measurement is not that the signal is always the same, but that the time it 
takes for the signal to return (echo) varies with the distance to the reflecting object. More precisely, the 
signal transmitted from the trigger pin is actually constant, usually a quick HIGH pulse. However, the 
signal received at the echo pin varies depending on the time it takes for the pulse to travel to the object 
and back. The further the object, the longer the duration of the HIGH pulse. 
 
One fact not to overlook is that the trigger signal is not the direct ultrasonic transmission signal but 
rather a signal sent to the component to induce it to generate the ultrasonic signal. Therefore, it's 
necessary to create and send the signal required by the component's datasheet. 
----------------------------------------------------------------------------- 
 
The pulseOut() method is designed to generate a digital pulse of a specified duration on a certain pin. 
It is a simple yet powerful tool for controlling devices that require precise timing signals and specific 
pulse widths, like ultrasonic sensors. 
 
We will examine the linearity and viewing angle characteristics of the two types of sensors. 
 
 
Table 7.2 Linearity and Viewing Angle Characteristics of Ultrasonic and Infrared Sensors 

 Ultrasonic Sensor Infrared Sensor 

Linearity 

Linearity: Ultrasonic sensors generally have 
excellent linearity across their effective range. 
The time it takes for sound waves to reflect off an 
object and return is directly proportional to the 
distance, leading to a linear relationship under 
ideal conditions. 
 
Factors Affecting Linearity: Linearity can be 
influenced by the texture and angle of the target 
surface as well as environmental factors such as 
temperature and humidity, which can affect the 
speed of sound. 

Linearity: The linearity of IR sensors can greatly vary 
depending on the type of IR sensor. Some IR distance 
sensors, using triangulation, can provide reasonable 
linear output across their operating range. However, 
sensors based on measuring the intensity of reflected light 
often exhibit non-linear responses, especially at close 
ranges. 
 
Factors Affecting Linearity: The reflectivity of the target 
object, surrounding lighting conditions, and the angle of 
incidence can significantly affect the linearity of IR sensor 
readings. 
 



Viewing 
Angle 

Spread: Ultrasonic sensors typically have a wider 
beam angle compared to IR sensors, meaning 
they can cover a broader area but with less 
accuracy in pinpointing the exact location of 
objects within that area. 
 
Implications: A wider spread can lead to "false 
positives" where the sensor detects objects that 
are not directly in front but within the broader 
beam range. 

Spread: IR sensors typically have a narrower field of view, 
allowing for more precise targeting of objects directly in 
front of the sensor. This makes them more suitable for 
detecting objects in a specific and narrow area. 
 
Implications: A narrower spread reduces the likelihood of 
detecting off-axis objects but also limits the detection area, 
requiring more sensors or sensor movement to cover the 
entire area. 

 
 
The pulseCount() method is particularly useful for counting the number of rotations of a wheel with a 
sensor attached or the number of objects passing through a sensor in a specified time frame. One can 
consider using pulseCount() to count the rotations of a wheel. 
 
 
 

             
(a)                                (b) 

 
Figure 7.1: Types of pins on ultrasonic sensors from different manufacturers (a) 3-pin (b) 4-pin 

 
 
 
7.1 Processing Ultrasonic Sensor Signals 
 
To process ultrasonic sensor signals, we use the pulseOut, pulseIn methods of the 'SelfAbot' class. A 
simple example using the pulseOut, pulseIn, and pulseCount methods is introduced. These methods 
are commonly used with various sensors and actuators, such as ultrasonic sensors or encoders. 
Ultrasonic sensors typically emit a pulse (pulseOut) and then measure the time it takes for the pulse to 
return (pulseIn), calculating the measurement distance using the measured time delay. 
 
Let's take a closer look at the pulseIn() method. 
(1) Trigger pin: Sends a short HIGH pulse to start the measurement. 
(2) Echo pin: Receives the HIGH pulse after it bounces off an object. 
 
4-pin HR04 Ultrasonic Sensor 
An example of measuring the distance to an object using a 4-pin HR04 ultrasonic sensor. 
Connect the ultrasonic sensor's trigger pin to a digital pin on the Arduino (e.g., pin 7). 
Connect the ultrasonic sensor's echo pin to another digital pin (e.g., pin 8). 
 
Ex7.1_HR04_ultrasonic_distance.ino  

#include "SelfAbot.h" 
 
SelfAbot abot; 
const byte triggerPin = 7; // Ultrasonic sensor trigger pin 
const byte echoPin = 8; // Ultrasonic sensor echo pin 
 
void setup() { 

abot.setup(); 
pinMode(triggerPin, OUTPUT); // Set the trigger pin as an output 
pinMode(echoPin, INPUT); // Set the echo pin as an input 
Serial.begin(9600); 

} 



void loop() { 
abot.pulseOut(triggerPin, 10); // 10 microseconds pulse 
unsigned long duration = abot.pulseIn(echoPin, HIGH); 

 
// Calculate distance (in centimeters or inches) 
// Speed of sound = 34300 cm/s (in air), so time for there and back is duration 
// Distance = (speed of sound * time) / 2 
float distanceCm = duration * 0.0343 / 2; 
float distanceInch = duration * 0.0135 / 2; 

 
// Print the distance 
Serial.print("Distance: "); 
Serial.print(distanceCm); 
Serial.print(" cm, "); 
Serial.print(distanceInch); 
Serial.println(" inches"); 

 
delay(1000); // Wait for a second before the next measurement 

} 
 
pulseOut(triggerPin, 10); sends a short pulse (10 microseconds) to trigger the ultrasonic sensor. 
pulseIn(echoPin, HIGH); waits for the pulse to return and measures its duration. The distance is 
calculated based on the pulse duration. Since the sound wave travels to the object and back, it is divided 
by 2. 
This code provides a basic example of using pulse-related methods in robots or sensors. You can adjust 
and expand this example according to the specific requirements of your project. 
 
3-pin Parallax Ultrasonic Sensor 
A 3-pin ultrasonic sensor can create the same effect. Parallax's 3-pin ultrasonic sensor handles both 
transmitting (trigger pin) and receiving (echo pin) ultrasonic signals with a single pin. Therefore, in the 
code for the 4-pin method, you can apply the same pin number for both. 
 

long duration, distanceCm; 
pinMode(pingPin, OUTPUT); 
digitalWrite(pingPin, LOW); 
delayMicroseconds(2); 
digitalWrite(pingPin, HIGH); 
delayMicroseconds(5); 
digitalWrite(pingPin, LOW); 
 
pinMode(pingPin, INPUT); 
duration = pulseIn(pingPin, HIGH); 
distanceCm = duration * 0.0343 / 2; 

 
The above code is specifically for measuring distance using the Parallax 3-pin ultrasonic sensor. It 
utilizes the Arduino library's standard function, pulseIn(), to measure the time (echo time) it takes for 
the ultrasonic pulse to travel to an object and return. Let's examine the code and role of 'pulseIn()'. 
 
pinMode(pingPin, OUTPUT); sets the pingPin as an output. This pin is connected to the trigger input of 
the ultrasonic sensor. 
 
Generating the ultrasonic pulse: 
digitalWrite(pingPin, LOW); DelayMicroseconds(2); ensures a clean transition from LOW to HIGH pulse. 
Starting in a LOW state ensures the line is clear. Setting the pin to LOW before sending a HIGH pulse 
stabilizes the signal, preventing false triggering due to residual charge or noise on the pin. The LOW 
state "resets" the pin to a known state. 'delayMicroseconds(2)' provides a short buffer time after setting 
the pin to LOW to ensure the HIGH pulse is clearly transmitted. This brief delay helps differentiate the 
pulse from previous activities or noise on the pin. 
digitalWrite(pingPin, HIGH); DelayMicroseconds(5); generates a short HIGH pulse (5 microseconds). 



This pulse triggers the sensor to emit ultrasonics. 
digitalWrite(pingPin, LOW); returns the pin to LOW. The ultrasonics are now traveling through the air. 
The concept of directly replacing this sequence with a pulseOut does not exist in the standard Arduino 
library. 
 
Receiving the echo: 
pinMode(pingPin, INPUT); changes the pingPin mode to INPUT to receive the echo signal. 
 
Measuring the ultrasonic travel time: 
duration = pulseIn(pingPin, HIGH); this is the crucial part. 'pulseIn()' measures the time between 
transmitting the ultrasonic pulse and receiving the echo. It waits until the pin goes HIGH (echo starts), 
starts timing, then waits until the pin goes LOW (echo ends), and stops timing. 
 
The pulseIn() function measures the length of a pulse (in microseconds) on a specified pin. This function 
takes two arguments: the pin number and the type of pulse to measure (HIGH or LOW). In the code 
above, pulseIn(pingPin, HIGH) measures the duration of the echo pulse. The pulse begins when the 
pin goes HIGH (echo received) and ends when the pin goes back to LOW (echo ends). 
 
The 'duration' variable records the time in microseconds between the transmission and reception of the 
ultrasonic pulse. To convert this time into distance, the speed of sound in air (about 343 meters per 
second, i.e., 0.0343 cm/μs) is typically used, considering that the sound has to travel to the object and 
back. Thus, the distance to the object is (flight time * 0.0343) / 2 cm. 
 
The pulseOut method of the 'SelfAbot' class can be used to rewrite the above code: 

long duration, distanceCm; 
abot.pulseOut(pingPin, 5); 
duration = abot.pulseIn(pingPin, HIGH); 
distanceCm = duration * 0.0343 / 2; 

 
I hope this explanation helps in understanding the operation of an ultrasonic sensor. 
Below, I'll introduce a .ino code that measures the distance to an object using the Parallax 3-pin 
ultrasonic sensor. 
 
Ex7.2_parallax_3pin_ultrasonic_distance.ino  

#include "SelfAbot.h" 
SelfAbot abot; 
const byte pingPin = 7; // sensor trigger/echo pin 
 
void setup() { 
abot.setup(); 
Serial.begin(9600); 
} 
void loop() { 
abot.pulseOut(pingPin, 5); // 5 microseconds pulse 
unsigned long duration = abot.pulseIn(pingPin, HIGH); 
// Calculate distance (in centimeters or inches) 
// Speed of sound = 34300 cm/s (in air), so time for there and back is duration 
// Distance = (speed of sound * time) / 2 
float distanceCm = duration * 0.0343 / 2; 
float distanceInch = duration * 0.0135 / 2; 
 
// Print the distance 
Serial.print("Distance: "); 
Serial.print(distanceCm); 
Serial.print(" cm, "); 
Serial.print(distanceInch); 
Serial.println(" inches"); 
delay(1000); // Wait for a second before the next measurement 
} 



7.2 Displaying the Radar Screen for Objects Ahead 
 
We plan to use the Processing tool to visualize data detected by an ultrasonic sensor while it rotates 
180 degrees. Instead of utilizing the method where the Arduino robot pivots in place, we will introduce 
a method that involves using a standard servo motor to rotate only the ultrasonic sensor. 
 
Ex7.3_ultrasonic_radar_scan.ino  
#include "SelfAbot.h" 
 
SelfAbot abot; 
const byte servoPin = 10; 
const byte pingPin = 7; // sensor trigger/echo pin 
int distance; 
 
void setup() { 

abot.setup(); 
abot.servoAttachAngle(servoPin); 
Serial.begin(9600); 

} 
 
void loop() { 

for (int i = 0; i <= 180 ; i++) { 
abot.servoAngle(i); 
delay(15); 
distance = calculateDistance(); 

 
Serial.print(i); 
Serial.print(","); 
Serial.print(distance); 
Serial.print("."); 

} 
for (int i = 180; i > 0 ; i--) { 

abot.servoAngle(i); 
delay(15); 
distance = calculateDistance(); 

 
Serial.print(i); 
Serial.print(","); 
Serial.print(distance); 
Serial.print("."); 

} 
} 
 
int calculateDistance(){  

abot.pulseOut(pingPin, 5); 
unsigned long duration = abot.pulseIn(pingPin, HIGH); 
int distanceCm = (int)duration * 0.034/2; 
return distanceCm; 

} 
 
The Arduino serial output screen only displays the angle and distance values. We want to visually 
represent the objects detected by the ultrasonic sensor in front of the screen more vividly. By using the 
Processing programming tool, it's easy to transform distance/angle data into visual image data. Since 
we won't introduce the entire usage of the Processing tool here, we'll only present how to visually 
represent the values measured by the ultrasonic sensor from the Arduino board to the Processing IDE 
screen. 
 
To install the Processing program, download and install it from the Processing website 
(https://processing.org/download). After installing the Processing program, let's see how the servo 



motor and ultrasonic sensor operated by Arduino code and the sensor output values from Arduino are 
connected to the Processing program. 
 
 

 
 

Figure 7.2: Ultrasonic sensor radar screen mounted on a robot 
 
 
Connecting Processing with Arduino output values is very simple. By looking at the interface, using 
Processing's serialEvent() function allows receiving angle and distance values measured by the 
ultrasonic sensor from the Arduino board to the Processing IDE. Data is read from the serial COM port 
and entered into iAngle and iDistance variables. Lastly, these variables are used to draw the radar, 
lines, detected objects, and some text. When running the attached Processing code, users only need 
to provide the correct COM port where Arduino and the computer are connected to the Processing code. 
Use the link provided below for the Processing source code: 
https://www.superkitz.com/arduino-radar-using-ultrasonic-sensor-hc-sr04-diy-kit/  
The Processing source code will also be left in the appendix for reference. 
 
 
7.3 Driving with an Ultrasonic Sensor Robot  
 
This example implements the simplest robot action that detects obstacles in front of the robot using an 
ultrasonic sensor and avoids them if detected. The code implementation method is introduced in two 
types: static and dynamic exploration. 
 
The first example introduced operates in static exploration mode. The essence of static exploration is 
to explore the surroundings while stationary, determine a safe angular range based on a preset 
standard, and then move. The principle of code operation is as follows: 
The Setup function starts serial communication and sets up the SelfAbot library. Servo motors 
connected to the two wheels and a standard servo motor with an ultrasonic sensor attached are 
prepared with the attach() function. 
 
The Loop function repeats continuously, and its main functions are as follows: 
(1) The calculateDistance function measures the distance to objects using the ultrasonic sensor. 
(2) The isSafeAreaDetected function checks if the distance detected at the scan angle is beyond a safe 
distance and if there is a continuous absence of obstacles in an angular range of more than 40 degrees. 
(3) The getSafeAreaCenterAngle function finds the widest angle area with the least number of obstacles 
among several distance measurements and returns the middle angle of that area. 
(4) The setTravelDirection function rotates the robot in the desired direction. It calculates the rotation 
angle from the current angle to the target angle and rotates the robot in place. 
(5) The alignSensorToFront function aligns the ultrasonic sensor of the robot to face forward. 
 
This process measures the distance to objects using the ultrasonic sensor, finds a safe area, and 
rotates the robot. 

 



 

 
 

Figure 7.3: Logic flowchart for static exploration with an ultrasonic sensor 
 
The Ex7.4 code below introduces an example of robot action that statically explores using an ultrasonic 
sensor. This method is mainly used when the environment is static or changes little. This static 
exploration example uses the ultrasonic sensor to explore the surrounding environment and adjust the 
angle to identify a safe area. 
 
For reference in implementing the example code, see Example Ex3.2 on standard servo motor 
operation in Chapter 3 and Example Ex6.4 or Ex6.5 on robot pivoting in place in Chapter 6. 
The isSafeAreaDetected and getSafeAreaCenterAngle functions in the code example use the SafeArea, 
as shown in Figure 7.4, which is the range where no obstacles exist within a safe distance in the robot's 
frontal area.  
 

 
Figure 7.4: Angular range considered as a safe area by the ultrasonic sensor 
 
 
Using this range value appropriately allows determining whether the robot can pass through obstacles. 
It needs to be set according to the user's robot operation environment. 
 
Ex7.4_Ultrasonic_sensor_search_driving.ino  

#include "SelfAbot.h" 
 
#define TRIGGER_PIN 7  
#define ECHO_PIN 7  
#define MAX_DISTANCE 200 // max distance (cm) 
#define SAFE_DISTANCE 20 // safe distance (cm) 



#define MAX_DETECTIONS 40  
 
#define INVALID_PIN 255 
const byte servoLeftPin = INVALID_PIN; 
const byte servoRightPin = INVALID_PIN; 
 
SelfAbot abot(servoLeftPin, servoRightPin); 
float factor = 10.5; 
 
struct Detection { 

int angle; 
unsigned int distance; 

}; 
 
Detection detections[MAX_DETECTIONS]; 
int detectionCount = 0; 
int notdetectedAngularrange = 40; // no obstacles angular range 
 
void setup() { 

Serial.begin(9600); 
abot.setup(); 
abot.servoAttachPins(13, 12); 
abot.servoAttachAngle(10); 

} 
 
void loop() { 

int distance = calculateDistance(); 
 

if(distance > 0 && distance <= SAFE_DISTANCE) { 
abot.servoSpeed(0, 0); 

 
detectionCount = 0; 
for(int angle = 0; angle <= 180; angle += 5) {  

abot.servoAngle(angle); 
delay(500); 
distance = calculateDistance(); 

 
if (detectionCount < MAX_DETECTIONS) { 

 
== Code omitted == 

For the rest of the code, please refer to the Arduino SelfAbot library examples! 
 
 
Unlike the previously introduced example, there is a method that combines (1) scanning to store 
distance data for each angle and (2) analyzing the stored data to align the robot in a direction without 
obstacles into one action. This method allows for analysis while scanning data and, based on this, 
makes real-time decisions on the robot's direction of movement. This approach is referred to as dynamic 
exploration. 
 
Compared to the previously introduced static exploration, dynamic exploration has the following 
differences: 
(1) Real-time data analysis: While the previous code analyzed the data after scanning was complete to 
decide on a safe direction of movement, the dynamic exploration method analyzes data in real time 
while moving the angle, allowing the robot to immediately decide and rotate to a safe direction if 
conditions are met. 
 
(2) Integration of scanning and analysis: In the dynamic exploration method, the robot performs 
scanning and analysis simultaneously while moving angles. This enables real-time exploration of the 
environment and immediate reactions. 



 
(3) Efficiency: Since the dynamic exploration method analyzes data while scanning, it can take less 
time to decide on a direction of movement. Additionally, by omitting the process of deciding on the 
movement direction after scanning is complete, time is saved. 
 
The following example is a modified version of the previously introduced Ex7.4 example. Unlike the 
previous example, which separated the process of scanning the entire 0 ~ 180-degree angle range to 
find one or more sections without obstacles and then executing robot movements in the next order, the 
example introduced below integrates the scanning work and robot rotation actions. To do this, data 
collection is immediately followed by data analysis, and as soon as a section without obstacles that 
meets the conditions is found, the robot is rotated immediately. By processing data in this way, the robot 
can operate more flexibly. 
 
This code is a more efficient and concise example than the previous code. Upload and run the sketch 
example Ex7.5_Ultrasonic_sensor_Integrated_scanning_rotation below.  
#include "SelfAbot.h" 
 
#define TRIGGER_PIN 7 
#define ECHO_PIN 7 
#define MAX_DISTANCE 200 // max distance (cm) 
#define SAFE_DISTANCE 20 // safe distance (cm) 
 
#define MAX_DETECTIONS 40 
 
#define INVALID_PIN 255 
const byte servoLeftPin = INVALID_PIN; 
const byte servoRightPin = INVALID_PIN; 
 
SelfAbot abot(servoLeftPin, servoRightPin); 
float factor = 10.5; 
 
struct Detection { 

int angle; 
unsigned int distance; 

}; 
 
Detection detections[MAX_DETECTIONS]; 
int detectionCount = 0; 
int notdetectedAngularrange = 40; // Angle range where obstacles do not exist 
 
void setup() { 

Serial.begin(9600); 
abot.setup(); 

 
 
 

== Code omitted == 
For the rest of the code, please refer to the Arduino SelfAbot library examples! 
 

 
  



Chapter 8 Specialized Robots with Class Inheritance 
 
8.1 Creating Subclasses with 'SelfAbot' as the Superclass 
8.2 How to Write an .ino File Using an Inheritance Class 
Appendix: 'EnhancedSelfAbot.zip' Library Header and Source Files 

 
 
 

 
 
 
Class inheritance is a concept in object-oriented programming (OOP) where a class (child class or 
subclass) can inherit properties and behaviors (methods and variables) from another class (parent class 
or superclass). This mechanism allows the creation of a new class based on an existing class, 
enhancing code reusability. Ultimately, class inheritance is a powerful tool in OOP for organizing code 
into a hierarchical structure for easy reuse, extension, and management. 
 
While class inheritance deals with vertical relationships (“is-a”) between classes, friend declarations 
address horizontal class access, and composition or containment relationships (“has-a”) involve one 
class including another as a member, which will not be discussed here.  
 
 
Let’s examine the characteristics of class inheritance: 
(1) Code Reuse: Through inheritance, a new class can inherit the properties and methods of an existing 
class, meaning there's no need to rewrite already written code. These can be extended or modified in 
the subclass. 
(2) Hierarchical Relationship: Inheritance creates a hierarchical relationship between classes. The 
parent class (also called base or superclass) provides general definitions that can be shared among 
several subclasses (derived classes or child classes). 



(3) Method Overriding: A subclass can override methods from the parent class to provide specific 
implementations different from the parent class. 
(4) Extensibility: Without affecting the parent class or other classes that inherit from it, new 
functionalities can be added to the subclass, improving code extensibility. 
(5) Polymorphism: Inheritance supports the concept of polymorphism, where a subclass instance can 
be treated as an instance of the parent class. This is particularly useful in scenarios where a generalized 
type is desired for various specific instances. 
 
A simple example illustrating class inheritance: 
 

class Vehicle { // Parent class 
public: 

void startEngine() { 
// Code to start the engine 

} 
}; 
class Car : public Vehicle { // Child class 
public: 

void openTrunk() { 
// Code to open the trunk 

} 
}; 

 
In this C++ example, Car is a subclass inherited from the Vehicle superclass. This means an object of 
the Car class can use both the startEngine method (inherited from Vehicle) and the openTrunk method 
(specific to Car). 
 
In summary, when used properly, class inheritance is a powerful tool in object-oriented programming 
(OOP) that can create elegant and efficient code structures. However, it's important to use it carefully. 
It's recommended for beginners to start with simple inheritance cases to grasp the concept before 
moving on to more complex scenarios. 
 
 
8.1 Creating a Subclass with 'SelfAbot' as the Superclass 
 
In this chapter, we'll create a subclass called 'EnhancedSelfAbot.' This class sets 'SelfAbot' as its 
superclass and inherits from it. We'll introduce a use case below. Among the codes we've discussed, 
one that wasn't included in the 'SelfAbot' base class will now be applied in this subclass. The 
'EnhancedSelfAbot' subclass includes various methods, one of which is the “gradual acceleration and 
deceleration” introduced in section 4.4, now represented in the subclass. 
 
------------ EnhancedSelfAbot.h ------------------------------------------------ 

#include "SelfAbot.h" 
 
class EnhancedSelfAbot : public SelfAbot { 
 
public: 

EnhancedSelfAbot() : SelfAbot(), _currentLeftSpeed(0), _currentRightSpeed(0) {} 
EnhancedSelfAbot(byte servoLeftPin, byte servoRightPin) : SelfAbot(servoLeftPin, servoRightPin), 

_currentLeftSpeed(0), _currentRightSpeed(0) {} 
void gradualServoSpeed(int targetLeftSpeed, int targetRightSpeed); 

 
private: 

int _currentLeftSpeed = 0; // Current speed of the left servo 
int _currentRightSpeed = 0; // Current speed of the right servo 

}; 
------------ EnhancedSelfAbot.cpp ----------------------------------------------- 

void EnhancedSelfAbot::gradualServoSpeed(int targetLeftSpeed, int targetRightSpeed) { 
int step = 5; // Speed change step setting 

 



while (_currentLeftSpeed != targetLeftSpeed || _currentRightSpeed != targetRightSpeed) { 
unsigned long currentMillis = millis(); 

 
if (_currentLeftSpeed < targetLeftSpeed) { 

_currentLeftSpeed += step; 
} else if (_currentLeftSpeed > targetLeftSpeed) { 

_currentLeftSpeed -= step; 
} 
if (_currentRightSpeed < targetRightSpeed) { 

_currentRightSpeed += step; 
} else if (_currentRightSpeed > targetRightSpeed) { 

_currentRightSpeed -= step; 
} 
servoSpeed(_currentLeftSpeed, _currentRightSpeed); 
while (millis() - currentMillis < 10) { 
// Small delay until 10ms have passed 
} 

} 
} 
 

 
The code addresses potential issues by improving it in the subclass "EnhancedSelfAbot," which can be 
examined directly in the file.  
 
 
8.2 How to Write an .ino File Using an Inheritance Class 
 
Using the "EnhancedSelfAbot" subclass is similar to using the "SelfAbot.zip" library; you add the 
"EnhancedSelfAbot.zip" library to the Arduino IDE program and use it as a separate library. If 
"SelfAbot.zip" library was installed, the "EnhancedSelfAbot" subclass should already be prepared in the 
Arduino library folder for use. 
 

EnhancedSelfAbot abot; 
void setup() { 

abot.servoAttachPins(LEFT_SERVO_PIN, RIGHT_SERVO_PIN); //Set servo pins 
abot.gradualServoSpeed(100, 100); // Start gradual speed adjustment 

} 
void loop() { 

// Main loop code... 
} 

 
You can write and experiment with the above example code in the Arduino .ino file using the 
"EnhancedSelfAbot" subclass. 
 
8.2.1 Straight Driving Correction Exercise 
Chapter 4 used a method of directly modifying the deviationFactor value in the .ino code for the robot's 
straight driving. Here, before running the code to correct the deviationFactor, a subclass method 
calibratedeviationFactor(int deviatedistance) is introduced for measuring the distance deviated from 
straight driving and correcting it as a parameter. 
 

void EnhancedSelfAbot::calibratedeviationFactor(int deviatedistance) { 
 if (devidistance != 0) { 
  float K = 0.005; 
  _deviationFactor += K * (float)deviatedistance; 
 } else { 
  // blank 
 } 
} 

 
Considerations for measuring with this method include: 
 



(1) The parameter deviateDistance of this method is the distance (in millimeters) that the robot has 
deviated perpendicularly from a straight line when it was supposed to travel straight. Since the degree 
of deviation from the straight line varies with the speed of the robot, it is advisable to adjust the speed 
to a moderate level for the practice. A speed close to medium, 40, is recommended for the practice. 
 
(2) Use a measuring ruler to travel a certain distance, then measure how much the robot has deviated 
from the straight line, input this value into the parameter of the above method, and run it again. If it is 
possible to input the moment or distance of deviation from the straight line as sensor data, this process 
can be automated. The calibration practice example below does not reflect the value obtained from the 
previous practice because the _deviationFactor value is always initialized. 
 
(3) The more the calibration work is repeated, the closer the robot will get to driving straight. If the results 
deviate more than expected, you may need to modify the constant value (e.g., 'K' value) used in the 
code. (The current 'K' value is not based on precise experimental results.) 
 
(4) If the robot drives straight after repeating the calibration routine, the _deviationFactor value 
corresponding to each driving condition is newly updated and saved, and the _deviationFactor value is 
stored as a class variable to be used as the final calibration value. (For reference, the 
driveStraight(leftSpeed, rightSpeed) method can be used interchangeably with the 
servoSpeed(leftSpeed, rightSpeed) for the same purpose.) 
 
When executing the calibration routine to make the robot drive straight using the example code 
introduced below, there is a limitation that the practice must be completed without disconnecting the 
USB cable. If you want to set a longer distance for calibration, you can transmit serial input data from 
the PC to the robot and receive the output results of the calibration work via Bluetooth or Wi-Fi wireless 
communication. 
 
 
The exercise sequence for Example Ex8.1 is briefly introduced as follows: 
(1) Connect the servo motor pins of the Arduino robot's left/right wheels to pins 13 and 12, respectively. 
(2) Upload the example sketch and align the robot in the space for the exercise. 
(3) After uploading the sketch, open the serial monitor window in the IDE program and enter 's' to make 
the robot drive forward for the scheduled time. 
(4) After the robot has moved forward for a certain time and then stops, when the message "Please 
measure the deviation distance and enter it (mm): " is displayed on the serial monitor, move the robot 
back to its original starting position and enter the distance it deviated from the straight line in millimeters 
in the serial monitor window, and press the enter key. (This series of user actions must be completed 
within 30 seconds. Otherwise, you have to start over from the beginning.) 
 

(※ The deviation distance should be entered in millimeters. To correct the robot to the left, use a ‘-’ 
sign before the deviation distance, and to correct it to the right, use a ‘+’ sign.) 
 
(5) Once the calibration work is completed, the _deviationFactor value used for calibration will be 
displayed. This value remains unchanged in the class member variable unless the calibration work is 
repeated again.) 
 
 
Ex8.1_straightDrive_calibration_practice.ino 

#include "EnhancedSelfAbot.h" 
 
const byte servoLeftPin = 255; 
const byte servoRightPin = 255; 
EnhancedSelfAbot abot(servoLeftPin, servoRightPin); 
 
void setup() { 

Serial.begin(9600); 
abot.setup(); 
abot.servoAttachPins(13, 12); // Replace with actual servo pins 



Serial.println("Calibration Practice for SelfAbot"); 
Serial.println("Place the robot and press 's' to start moving."); 

} 
 
void loop() { 

if (Serial.available() > 0) { 
char command = Serial.read(); 
if (command == 's') { 

performCalibration(); 
} 

} 
} 
 
void performCalibration() { 

int servospeed = 40; 
int delaytime = 5000; // Time to make the robot go straight (5 seconds) 
int measuredDevidistance; // Save the measured deviation distance (unit : mm) 
unsigned long startTime = millis(); // Start time for timeout 
unsigned long timeout = 30000; // 30 second timeout 

 
abot.resetDeviationFactor(); 

 
Serial.println("Going straight. Please wait..."); 
abot.driveStraight(servospeed, -servospeed); // Straight 
delay(delaytime); // Go straight for the specified delay time 
abot.servoSpeed(0, 0); // Stop the robot 

 
Serial.println("Please measure the deviation distance and enter it (mm): "); 
delay(500); // Short delay to ensure the user sees the message 

 
// Clear the serial buffer to remove any unwanted or leftover data 
while (Serial.available() > 0) { 

Serial.read(); 
} 

 
// Wait for new input 
while (Serial.available() == 0) { 

// Check if timeout has been reached 
if (millis() - startTime > timeout) { 

Serial.println("Input waiting time has expired. Please restart calibration."); 
return; // exit the function when timeout is reached 

} 
delay(100); // Small delay to prevent the loop from running too fast 

} 
 

measuredDevidistance = Serial.parseInt(); // Read the entered value... 
 

// Check for '0' input to exit without performing corrections 
if (measuredDevidistance == 0) { 
Serial.println("Exiting calibration without correction as the input is '0'."); 
return; // exit the function as '0' was entered 
} 

 
Serial.print("Measured deviation distance: "); 
Serial.print(measuredDevidistance); 
Serial.println("mm"); 

 
// Convert mm to cm for calibratedeviationFactor if necessary 
float measuredDevidistanceCm = measuredDevidistance / 10.0; 



abot.calibratedeviationFactor(measuredDevidistanceCm); 
 

abot.driveStraight(servospeed, -servospeed); // Straight 
delay(delaytime); // Go straight for the specified delay time 
abot.servoSpeed(0, 0); // Stop the robot 

 
// Display the final corrected _deviationFactor value 
float finalDeviationFactor = abot.getDeviationFactor(); 
Serial.print("Final corrected _deviationFactor: "); 
Serial.println(finalDeviationFactor); 

 
Serial.println("Calibration is complete. Test the robot's movements again."); 

} 
 
 
The operation principle and sequence of the performCalibration() function are as follows: 
 
Initial values of variables (such as the function's servospeed, delaytime, etc.) are adjustable, so set 
them to suitable values, upload the sketch, and open the serial monitor window. You will see the 
following message ("Place the robot and press 's' to start moving."). Position the robot's 3-point 
switch to position 2, enter the letter 's' in the serial monitor, and press Enter. 
 
The robot calls abot.resetDeviationFactor(); to initialize the _deviationFactor value to 0, travels for 
delaytime, and then stops. The serial monitor will display a message asking you to enter the distance 
the robot deviated from a straight line in millimeters. 
 

Going straight. Please wait... 
Please measure the deviation distance and enter it (mm): 

 
Measure the distance by which the robot deviated from a straight line, enter the approximate deviation 
distance in millimeters in the serial monitor, and press Enter. Pressing Enter corrects the 
_deviationFactor value and executes the abot.driveStraight(servospeed, -servospeed); function. At this 
point, you must return the robot to its original starting position since the robot will start moving again. 
 
Your entered value will be displayed on the screen as follows: 

Measured deviation distance: ** mm 
Final corrected _deviationFactor: *** 
Calibration is complete. Test the robot's movements again. 

 
The calibration task for straight-line driving is now complete.  
The _deviationFactor: *** value found in this calibration task is an essential member variable for using the 
driveStraight() method in the subclass. 
 
 

 
 

Figure 8.1: Calibration example for the robot's straight-line driving 



Remember or note down the final calculated correction factor (_deviationFactor) used in the robot you 
are working with for future use of the subclass. 
 
During the practice, you may experience exceptions, such as not entering the deviation distance within 
30 seconds or entering a deviation distance of ‘0’. You can start over from the beginning. 
When executing the abot.driveStraight(servospeed, -servospeed); function in another practice, all 
previously stored _deviationFactor values are erased. 
 
When starting a new sketch example, you can set and use the _deviationFactor value found in the 
previous calibration function execution in the sketch's setup function using the setter() method. 
 
 
(Note) --------------------------------------------------------------------- 
Why use getter() and setter() methods? 
The getter() and setter() methods in the ‘EnhancedSelfAbot’ library are as follows: 
 

float EnhancedSelfAbot::getDeviationFactor() const { 
return _deviationFactor; 

} 
void EnhancedSelfAbot::setDeviationFactor(float deviationFactor) { 

_deviationFactor = deviationFactor; 
} 

 
The _deviationFactor member variable exists in the class's private area, maintaining the principles of 
encapsulation and information hiding in object-oriented programming. 
---------------------------------------------------------------------------- 
 
 
8.2.2 Gradual Speed Control Practice 
This .ino file example code practices the test drive of 'Arduino robot's gradual speed change' using the 
gradualServoSpeed method. Along with the servoSpeed() method, the gradualServoSpeed method 
uses the driveStraight method instead of servoSpeed() method to address the issue that the speed 
difference between the robot's left and right wheels becomes noticeably pronounced at speed values 
below 100, causing the robot to veer significantly to the left or right even during straight-line driving. 
 
The gradualServoSpeed method reflects the values found in the previous correction work in the setup 
function using the setter() method. Add abot.setDeviationFactor(-0.05);, upload the sketch, and proceed. 
(Note: The -0.05 value shown in the example may vary for each user, so you must find and use your 
value.) 
 
Ex8_2_enhanced_gradual_servospeed.ino  

#include “EnhancedSelfAbot.h“ 
 
const byte servoLeftPin = 255; 
const byte servoRightPin = 255; 
EnhancedSelfAbot abot(servoLeftPin, servoRightPin); 
 
void setup() { 

Serial.begin(9600); // Start serial communication for debugging 
abot.setup(); 
abot.servoAttachPins(13, 12); // Replace with actual servo pins 

 
abot.setDeviationFactor(-0.05); 

} 
 
void loop() { 

abot.gradualServoSpeed(100, -100); 
delay(2000); // Drive for 2000 milliseconds (2 seconds) 

 



abot.gradualServoSpeed(40, -40); 
delay(3000); 

} 
 
 
After uploading the sketch to Arduino, turn on the robot's power and observe its movement. The robot 
should gradually reach the target speed. Observe whether the robot moves in the desired direction 
accurately and whether the speed change is smooth. If the robot's movement path or speed change is 
different from what you expect, you can adjust the step value. 
 
And if the entered _deviationFactor value of -0.05 is well-calibrated, the robot should not deviate 
significantly from straight-line driving, even if the speed value is high at 100 or low at 40. 
 
 
8.2.3 Arduino Robot Following Light 
This is an Arduino .ino example that utilizes the lightFollowing method of the ‘EnhancedSelfAbot’ class. 
This example uses a phototransistor to enable the robot to autonomously make decisions and act. 
Refer to the content and Figure 5.6 in Section 2 of Chapter 5 for setting up the circuit the same way. 
This implementation is identical to the practice example Ex5.5, but the .ino code composition is much 
more concise because a substantial part of the code's content is contained in the subclass. 
 
A slightly different aspect is that while the previous example Ex5.5 uses the servoSpeed() method, the 
code below uses the driveStraight() method, which corrects the robot's straight-line driving. Therefore, 
the robot's driving action can be more delicate and accurate. 
 
Ex8_3_enhanced_lightfollowing_abot.ino 
#include "EnhancedSelfAbot.h" 
 
const byte servoLeftPin = 255; 
const byte servoRightPin = 255; 
EnhancedSelfAbot abot(servoLeftPin, servoRightPin); 
 
void setup() { 

Serial.begin(9600); // Start serial communication for debugging 
abot.setup(); 
abot.servoAttachPins(13, 12); // Replace with actual servo pins 

} 
 
void loop() { 

unsigned long leftrcTime = abot.rcTime(8); 
unsigned long rightrcTime = abot.rcTime(6); 

 
abot.lightFollowing(leftrcTime, rightrcTime); 
delay(50); 

} 
 
 
When the robot starts to move, turn on a lantern or smartphone light to guide the robot's movements. If 
the robot begins to move towards the light source, it is functioning correctly. 
 
If there's a need to adjust the robot's subtle actions, you may need to tweak the values in the library 
code. If you feel your understanding of the code has improved through the lessons, I encourage you to 
give it a try. 
 
 
8.2.4 Practice with a Robot Exploring Using Infrared Sensors 
For this practice, place infrared LEDs and infrared receivers on the left and right sides of the Arduino 
robot and complete the circuit connection. The detailed circuit configuration and operating principle are 
the same as in Section 6.1. 



 
Since infrared light is not visible to the human eye, to indicate whether the infrared sensors are detecting 
objects or not with light, you can add LED circuits on the left and right sides and include the LED code. 
Once the hardware connection is complete, refer to the code below and add it accordingly. 
 

pinMode(11, OUTPUT); 
pinMode(4, OUTPUT); 
 
if (irLeft == 0) { 

digitalWrite(11, HIGH); 
} else { 

digitalWrite(11, LOW); 
} 
if (irRight == 0) { 

digitalWrite(4, HIGH); 
} else { 

digitalWrite(4, LOW); 
} 
 
 

 
 

Figure 8.2: The appearance of exploration driving with infrared transceiver sensors 
 
 

Ex8_4_enhanced_irNavigationdriving_abot.ino  
#include "EnhancedSelfAbot.h“ 
 
const byte servoLeftPin = 255; 
const byte servoRightPin = 255; 
EnhancedSelfAbot abot(servoLeftPin, servoRightPin); 
 
void setup() { 

Serial.begin(9600); // Start serial communication for debugging 
abot.setup(); 
abot.servoAttachPins(13, 12); // Replace with actual servo pins 

 
abot.setDeviationFactor(-0.05); 

} 
 
void loop() { 



int irLeft = abot.irDetect(9, 10, 38000); 
int irRight = abot.irDetect(2, 3, 38000); 

 
abot.irNavigationdriving(irLeft, irRight); 
delay(50); 

} 
 
 
If the sensitivity of the infrared sensors installed on the left and right feels too sensitive or dull 
(recognizing objects from a distance or failing to recognize them even when close), you should find the 
appropriate conditions by changing the size of the resistance in the infrared circuit. 
 
Another consideration is the infrared sensors' detection of light, where the ambient light conditions can 
cause interference. If possible, align all practice conditions in the same environmental conditions, and 
practice the robot's operation in the same environment. For example, it is not recommended to practice 
moving between bright areas where sunlight enters and dark areas where light does not enter within a 
classroom. 
 
 
8.2.5 Expressing Robot In-Place Rotation Angle 
To easily create in-place rotation actions for the Arduino robot, use the calibrateRotation() method and 
rotateAbot() method. First, the calibrateRotation() method is intended to calculate the correction factors 
_setanglefactorCW, _setanglefactorCCW, which can correspond to the robot's rotation angle, using the 
time (global variable: duration) it takes for the robot to make one full 360-degree rotation in place. 
 
When the robot rotates in place, the characteristics of clockwise rotation and counterclockwise rotation 
can be different. These characteristic differences can be due to factors ranging from slight differences 
in servo motors to asymmetry in the robot's center of gravity and differences in surface friction between 
the two wheels. 
 
Therefore, execute the sketch example below for in-place rotation calibration. 
 
Ex8.5_enhanced_rotateinplace_calibration.ino 

#include "EnhancedSelfAbot.h" 
 
const byte servoLeftPin = 255; 
const byte servoRightPin = 255; 
EnhancedSelfAbot abot(servoLeftPin, servoRightPin); 
 
int duration = 4400;  
 
void setup() { 
Serial.begin(9600); // Start serial communication for debugging 
abot.setup(); 
abot.servoAttachPins(13, 12); // Replace with actual servo pins 
 
bool isClockwise = false; // Set true for clockwise, false for counterclockwise 
abot.calibrateRotation(duration, isClockwise);  
// Get and display the appropriate _setanglefactor value based on the direction 
if (isClockwise) { 
float setanglefactorCW = abot.getAngleFactorCW(); 
Serial.print("_setanglefactorCW clockwise value : "); 
Serial.println(setanglefactorCW); 
} else { 
float setanglefactorCCW = abot.getAngleFactorCCW(); 
Serial.print("_setanglefactorCCW counterclockwise value : "); 
Serial.println(setanglefactorCCW); 
} 
} 



void loop() { 
} 

 
 
Once the calibration for the parameters needed for one full clockwise and counterclockwise rotation 
through repeated practice is complete, you can easily rotate the robot by applying the desired angle 
value as a parameter to the rotateAbot() method. Use the rotateAbot() method conveniently when 
selecting the direction of robot travel or sensor operation. 
 
For clockwise rotation, to find the correction factor (_setanglefactorCW), change the code in sketch 
Ex8.5 from bool isClockwise = false; to true and upload the sketch. For counterclockwise rotation, keep 
the value as false, enter the duration value it takes for a 360-degree rotation, and upload the sketch to 
find the correction factor (_setanglefactorCCW). 
 
Let's explain again in detail how to find the correction factors _setanglefactorCW, _setanglefactorCCW 
for the robot's in-place rotation. For clockwise rotation, input the bool variable as true, and enter an 
arbitrary value for the global variable duration to find the optimal time value for a 360-degree rotation. 
Each time the sketch is executed, the _setanglefactorCW value is displayed on the serial output screen. 
Record and use the value displayed in the most optimal 360-degree rotation condition. 
 
 

 
 

Figure 8.3: Output of correction factor during the robot's clockwise rotation 
 
For counterclockwise rotation, input the bool variable as false, and enter an arbitrary value for the 
global variable duration to find the optimal time value for a 360-degree rotation. Each time the sketch is 
executed, the _setanglefactorCCW value is displayed on the serial output screen. Record and use the 
value displayed in the most optimal 360-degree rotation condition. 
 

 
 

Figure 8.4: Output of correction factor during the robot's counterclockwise rotation 
 

After completing the calibration with the calibrateRotation() method from the results of Figures 8.3 and 
8.4, you can rotate the robot in place by the desired angle using the rotation angle as a parameter. If 
the calibration practice was conducted correctly, there should be no significant difference between 
clockwise and counterclockwise rotations, and it should rotate by the desired angle. 
 
The example sketch below repeats the action of rotating the robot 360 degrees clockwise, waiting for 2 



seconds, and then rotating it 360 degrees counterclockwise. To rotate the robot clockwise, input a 
positive number as a parameter to the rotateAbot() method, and for counterclockwise rotation, input a 
negative number. 
 
Ex8_6_enhanced_abot_rotateinplace.ino 
#include "EnhancedSelfAbot.h" 
 
const byte servoLeftPin = 255; 
const byte servoRightPin = 255; 
EnhancedSelfAbot abot(servoLeftPin, servoRightPin); 
 
void setup() { 

Serial.begin(9600); // Start serial communication for debugging 
abot.setup(); 
abot.servoAttachPins(13, 12); // Replace with actual servo pins 

 
abot.setAngleFactorCW(10.97); 
abot.setAngleFactorCCW(12.22); 

} 
 
void loop() { 

abot.rotateAbot(360); // Rotate robot by 90 degrees 
delay(2000); // Wait for 2 seconds 

 
abot.rotateAbot(-360); // Rotate robot by -90 degrees (opposite direction) 
delay(2000); // Wait for 2 seconds 

} 
 
 
The calibrateRotation() method functionality is a simplified code form intended for calibration without 
additional sensor parts. 
 
To start calibration with the below code, you would need to use additional sensors, like a gyroscope or 
compass, to automate the task. Refer to the below example code. You would need to define a 
getOrientation() method to process the sensor signal that provides angle data. 
 

void EnhancedSelfAbot::calibrateRotation() { 
unsigned long startTime = millis(); // Start time 
float startOrientation = this->getOrientation(); // Get starting orientation 
this->servoSpeed(100, -100); // Start rotation 

 
float currentOrientation; 
do { 

currentOrientation = this->getOrientation();  
delay(10); // Small delay to prevent too frequent checks 

} while (abs(currentOrientation - startOrientation) < 360.0);  
// Rotate until a full 360-degree turn is completed 

 
this->servoSpeed(0, 0); // Stop rotation 
unsigned long endTime = millis(); // End time 

 
// Calculate time taken for a 360 degree rotation 
unsigned long timeTaken = endTime - startTime; 
_setanglefactor = timeTaken / 360.0; 

} 
 
The introduced code enables the robot to measure its own rotation angle with a sensor and stops upon 
completing a 360-degree rotation. It then stores the angle conversion coefficient in _setanglefactor, 
allowing the robot's rotateAbot() method to use the rotation angle parameter for spot rotations. This 



means that running the code once is sufficient for a successful calibration, typically performed in the 
setup function. 
 
 
8.2.6 Aligning the Robot's Direction by Detecting Frontal Objects with Infrared Sensors 
When installing and utilizing two infrared sensors on an Arduino robot, a known method involves using 
the sensors to detect left and right frontal obstacles independently, interpreting these as '0' or '1' digital 
signals for detection. Another application method employs infrared sensors to estimate the distance to 
frontal objects, thereby diversely controlling the robot. 
 
Given that the infrared sensors used in the exercise are not high-end, it's more practical to use them 
for relative distance estimation rather than absolute distance measurement accuracy. This is because, 
unlike ultrasonic sensors, infrared light can be significantly affected by the color of objects (e.g., white 
vs. black), material of objects, and ambient light conditions, causing distance errors. Therefore, it's 
necessary to minimize these factors and conduct the exercise under consistent environmental 
conditions.  
 
 

     
 

Figure 8.5: Method of Focusing Two Infrared Sensors on a Frontal Object 
 
 
As explained in Table 7.2, infrared sensors, having a narrower field of view compared to ultrasonic 
sensors, can more accurately target objects directly in front of them. The orientation of the two infrared 
sensors can be adjusted inward towards the center to favorably detect frontal objects. 
 
Now, taking into account all limitations, we'll proceed with the exercise by setting up the robot with two 
infrared sensors as shown in Figure 8.5 and detecting the distance to frontal objects to control the 
robot's autonomous driving. 
 
 

   
 

(a)                                           (b) 
 
Figure 8.6: Scenes of an Infrared Sensor Robot Detecting a White A4 Paper Obstacle (a) Detection 
scene (b) Serial output 



The logic of our exercise first involves the robot slowing down and eventually stopping as it approaches 
an object in its path. Secondly, once stopped, the robot scans from -60 degrees to +60 degrees in place 
to align itself in the most open direction, opposite to the previous exercise in Chapter 6, Section 6, 
where the robot aligned itself towards the nearest object. This time, the aim is to align the robot in the 
direction of the most open space (the direction where objects are furthest away). 
 
To vary the serial output values when detecting a white obstacle with infrared sensors, you can adjust 
the current size output by the LED. In previous exercises, 2kΩ resistors were used for digital pins 2 and 
9. In this exercise, to create a bigger change in output values at closer distances, the resistance size in 
the left LED circuit was increased by connecting a 2kΩ and a 1kΩ resistor in series. 
 
The result in Figure 8.6(b) shows the Left IR output value is larger than the Right IR, indicating the A4 
paper is getting closer. Now, the right LED circuit will also be changed to a 3kΩ resistance condition. 
 
Rather than focusing on the precision of the two infrared sensors' distance measurements, we plan to 
use the sum of the two output values as a variable for the distance to the frontal object, better handling 
relative distance changes. The following example sketch implements the logic where the robot slows 
down and eventually stops as it approaches an object, fulfilling the first logical construct. 
 
Ex8.7_enhanced_irdistance_speedcontrol_infrontofObstacle.ino 

#include "EnhancedSelfAbot.h" 
 
const byte servoLeftPin = 255; 
const byte servoRightPin = 255; 
EnhancedSelfAbot abot(servoLeftPin, servoRightPin); 
 
void setup() { 
Serial.begin(9600); 
abot.setup(); 
abot.servoAttachPins(13, 12);  
 
abot.setDeviationFactor(-0.05); 
} 
 
void loop() { 
byte irLeftled = 9; 
byte irLeftreceiver = 10; 
byte irRightled = 2; 
byte irRightreceiver = 3; 
int irDistLeft = abot.irDistance(irLeftled, irLeftreceiver);  
int irDistRight = abot.irDistance(irRightled, irRightreceiver);  
 
int totalIRValue = irDistLeft + irDistRight; 
 
Serial.print("Left IR: "); 
Serial.print(irDistLeft); 
Serial.print(" || Right IR: "); 
Serial.println(irDistRight); 
delay(50); 
 
if (totalIRValue > 9) { 
// If the total IR value is more than 9, run the robot forward normally 
abot.gradualServoSpeed(100, -100); 
} else if (totalIRValue >= 1 && totalIRValue <= 9) { 
// If the total IR value is between 5 and 9, reduce the speed gradually 
// Adjust the speed reduction factor as per your requirement 
int speed = map(totalIRValue, 1, 9, 0, 100); 
abot.gradualServoSpeed(speed, -speed); 
} else { 



// If the total IR value is less than 5, stop the robot 
abot.servoSpeed(0, 0); 
} 
 
delay(20); 
} 

 
 
It's time to add the second logic. The essence of the second logic is to align the robot in the direction 
where there is no obstacle or where the obstacle is furthest away, after scanning from -60 degrees to 
+60 degrees in place while the robot is stopped. 
 
This purpose of robot action will be added in the loop() function's else condition in the Ex8.7 example 
content. The below code will first rotate the robot to a -70 degree angle, then rotate it by 10 degrees at 
a time to measure the distance to frontal objects, recording the angle where the furthest object is 
detected simultaneously. 
 
Ex8.8_enhanced_irdistanceScan_stoppedPosition.ino 

#include "EnhancedSelfAbot.h" 
 
const byte servoLeftPin = 255; 
const byte servoRightPin = 255; 
EnhancedSelfAbot abot(servoLeftPin, servoRightPin); 
 
void setup() { 

Serial.begin(9600); 
abot.setup(); 
abot.servoAttachPins(13, 12); // Replace with actual servo pins 

 
abot.setDeviationFactor(-0.05); 
abot.setAngleFactorCW(10.97); 
abot.setAngleFactorCCW(12.22); 

} 
 
void loop() { 

byte irLeftled = 9; 
byte irLeftreceiver = 10; 
byte irRightled = 2; 
byte irRightreceiver = 3; 

 
int irDistLeft = abot.irDistance(irLeftled, irLeftreceiver);  
int irDistRight = abot.irDistance(irRightled, irRightreceiver);  

 
int totalIRValue = irDistLeft + irDistRight; 

 
Serial.print("Left IR: "); 
Serial.print(irDistLeft); 
Serial.print(" || Right IR: "); 
Serial.println(irDistRight); 

 
if (totalIRValue > 9) { 

// If the total IR value is more than 9, run the robot forward normally 
abot.gradualServoSpeed(100, -100); 

} else if (totalIRValue >= 1 && totalIRValue <= 9) { 
// If the total IR value is between 5 and 9, reduce the speed gradually 
// Adjust the speed reduction factor as per your requirement 
int speed = map(totalIRValue, 1, 9, 0, 100); 
abot.gradualServoSpeed(speed, -speed); 

} else { 



// If the total IR value is less than 5, stop the robot 
abot.servoSpeed(0, 0); 
delay(1000); 

 
int maxdistance = 0; 
int directionOfangle = 0; 

 
int currentAngle = -70; 
abot.rotateAbot(currentAngle); 
delay(200); 

 
for (int i = 0; i <= 13; i++) { 

if (i != 0) { 
abot.rotateAbot(10); 
currentAngle += 10; 
delay(200); 

} 
int irDistLeft = abot.irDistance(irLeftled, irLeftreceiver);  
int irDistRight = abot.irDistance(irRightled, irRightreceiver);  
int totalIRValue = irDistLeft + irDistRight; 

 
if (totalIRValue > maxdistance) { 

maxdistance = totalIRValue; 
directionOfangle = currentAngle; 

} 
} 
abot.rotateAbot(directionOfangle - currentAngle); 

}   
delay(20); 

} 
 
 
After scanning the entire planned angular range, the robot's direction is aligned to the angle where the 
furthest object was detected, and the for loop is terminated. Upon repeating the loop, the robot can start 
moving forward normally again since no frontal object is close. The completed sketch example is 
introduced below in Ex8.8. Upload the sketch and give it a try. 
 
If the code executes correctly, the robot will align itself in the direction where the object is placed furthest 
away after detecting a frontal object. Combining signals from two infrared sensors helps consistently 
detect frontal objects, even if one sensor slightly malfunctions or there is a variance between the two 
sensors. Try creating a robot that can navigate and escape complex mazes. 
 
If there is more than one direction within the search area where the sensor's detection range is 
exceeded, will it head towards the first or the last direction? What other potential issues might arise? 
Your imagination can make the robot more intelligent and sophisticated. Implement the methods more 
intricately while envisioning a robot that monitors frontal objects! 
 
 
8.2.7 Displaying Radar Screen with Ultrasonic Sensor 
Connect the ultrasonic sensor to pin 7, and you can display the radar screen on the monitor connected 
with the Processing program, similar to the exercise in Section 7.2. Upload the example below to 
experience the same exercise outcome. 
 
Ex8.9_enhanced_ultrasonic_radar_scan.ino 

#include "EnhancedSelfAbot.h" 
 
EnhancedSelfAbot abot;  
void setup() { 

Serial.begin(9600); 



abot.setup(); 
abot.servoAttachAngle(10); 
abot.setUltrasonicSensorPin(7, 7); 

} 
void loop() { 

abot.ultrasonicRadarData(); 
delay(2000); 

} 
 
 
The abot.setUltrasonicSensorPin(7, 7); code is a setter function to set the triggerPin and echoPin 
numbers for the ultrasonic sensor. The parameters used in the current code are for an example using 
a 3-pin ultrasonic sensor from Parallax, hence the same pin number is used. Additionally, the 
abot.ultrasonicRadarData(); code implements rotating the ultrasonic sensor to detect distance and 
transmit the data via the serial port. 
 
 
8.2.8 Driving a Robot with Ultrasonic Sensor for Object Detection 
Chapter 7 introduced Example Ex7.5, a robot example that drives while detecting objects in front with 
an ultrasonic sensor. Here, we practice with a slightly more sophisticated robot by utilizing the same 
code from Chapter 7 but with the EnhancedSelfAbot library. 
 
 
Ex8.10_enhanced_ultrasonic_navigating_driveRobot.ino  

#include "EnhancedSelfAbot.h" 
 
#define SAFE_DISTANCE 20 // safe distance (cm) 
#define INVALID_PIN 255 
const byte servoLeftPin = INVALID_PIN; 
const byte servoRightPin = INVALID_PIN; 
 
EnhancedSelfAbot abot(200, 20, 40); 
 
void setup() { 

Serial.begin(9600); 
abot.setup(); 
abot.servoAttachPins(13, 12); // Replace with actual servo pins 
abot.servoAttachAngle(10); 

 
abot.setUltrasonicSensorPin(7, 7); 

 
abot.setDeviationFactor(-0.05); 
abot.setAngleFactorCW(10.97); 
abot.setAngleFactorCCW(12.22); 

} 
 
void loop() { 

abot.gradualServoSpeed(80, -80); // forward robot driving 
 

scanInDirection(-30, 30); // scan from –30 to +30 
delay(100);  
scanInDirection(30, -30); // scan from +30 to –30  

 
delay(100);  

} 
void scanInDirection(int startOffset, int endOffset) { 

int step = startOffset < endOffset ? 15 : -15; // Determines the scan direction 
 

for(int offset = startOffset; step > 0 ? offset <= endOffset : offset >= endOffset; offset += step) { 



abot.servoAngle(90 + offset); // Adjusts the servo motor to the specified angle 
delay(30); // Time for the servo motor to move and stabilize 
int distance = abot.calculateDistance(); // Measures distance at the current angle 
 
if(distance <= SAFE_DISTANCE) { 

abot.gradualServoSpeed(20, -20); // Stops the robot if an obstacle is detected 
abot.detectAndProcessSafeArea(); // Performs detailed search and avoidance 
abot.gradualServoSpeed(80, -80); // Advances again after avoidance action 
break;  

} 
} 

} 
 
 
This practice example demonstrates a robot that slows down for scanning when a front object appears 
and resumes normal speed after finding a direction with no front objects. 
 
To successfully perform Example Ex8.10, you must first complete all the examples from the beginning 
of Chapter 8. These examples include finding correction factors to offset mechanical movement 
deviations in the Arduino robot, allowing it to drive straight regardless of speed, implement gradual robot 
speed, and perform proportional clockwise or counterclockwise rotation in place. 
 
For Example Ex8.10, the setup() function must apply unique correction factors for your robot. 

abot.setDeviationFactor(-0.05); 
abot.setAngleFactorCW(10.97); 
abot.setAngleFactorCCW(12.22); 

 
The values applied in the code must be unique to the experimenter. Also, the code represents using a 
3-pin ultrasonic sensor with pin 7. 

abot.setUltrasonicSensorPin(7, 7); 
 
If using a 4-pin ultrasonic sensor, the first parameter should be the trigger pin and the second parameter 
the echo pin. 
 
The constructor can specify several variables for exploring with the ultrasonic sensor. The following 
code details these unique variables for this practice. 

EnhancedSelfAbot abot(200, 20, 40); 
 
This object declaration with three parameters uses the constructor. The first parameter sets the 
maximum distance the ultrasonic sensor can measure to 200 cm, a provisional value that experimenters 
can test and adjust to more accurately reflect reality. 
 
The second parameter is the distance under which the ultrasonic sensor deems it unsafe when less 
than 20 cm. Experimenters can adjust this value based on robot speed, sensor scanning speed, and 
the complexity of surrounding obstacles. 

※ Note that the second parameter value has the same meaning as the #define SAFE_DISTANCE 20 
code used in the .ino code for safety distance conditions. 
 
The third parameter represents conditions where the ultrasonic sensor detects an angular range outside 
the safety distance to be greater than 40 degrees, implying the robot has enough room to pass in the 
selected direction. This value can also be adjusted according to the user's discretion. 
 
Explore various practices based on the above code design concepts. 
 
The scanInDirection() function used in the .ino example is examined. 
 

scanInDirection(-30, 30); 
delay(100); // Wait before changing scan direction 



scanInDirection(30, -30); 
delay(100); 

 
In the code, the scan range is from –30 to 30 or from 30 to –30, implementing the code within the 
function using a step of 15 and a ternary operator to determine whether to add or subtract 15. 
 

int step = startOffset < endOffset ? 15 : -15; // Determines scan direction 
for(int offset = startOffset; step > 0 ? offset <= endOffset : offset >= endOffset; offset += step) { 

abot.servoAngle(90 + offset); // Adjusts the servo motor to the specified angle 
delay(30); // Time for the servo motor to move and stabilize 

 
This operation contrasts with the following example code, offering more flexibility. 
 

int angles[] = {-30, -15, 0, 15, 30}; // Defines angle offsets in an array 
for(int i = 0; i < 5; i++) { // Iterates over each array element 

int angleOffset = angles[i]; 
abot.servoAngle(90 + angleOffset); // Adjusts the servo motor to the specified angle 
delay(100); // Time for the servo motor to move and stabilize 

 
The ultrasonic sensor measures and records the distance to frontal objects. 

abot.calculateDistance() 
  
Unlike the conditions in Chapter 7's example, the if condition does not immediately stop when an 
obstacle is detected within the front safety distance but slows down to 20 speed. Then, it scans the 
surroundings with the sensor and resumes normal speed of 80 once a safe driving direction is 
determined. 
 

if(distance <= SAFE_DISTANCE) { 
abot.gradualServoSpeed(20, -20); // Robot stops if an obstacle is detected 
abot.detectAndProcessSafeArea(); // Performs detailed search and avoidance action 
abot.gradualServoSpeed(80, -80); // Advances again after avoidance action 
break; // Exits the loop if any condition is met as further detection is unnecessary 

 
The detailed explanation of methods used in the library is omitted. If you need a deeper understanding, 
feel free to ask ChatGPT about the code's operating principles. Engaging with artificial intelligence in 
conversation might reveal new possibilities for using the code. 
 
We wish you continued profound understanding of the code. 
  



Appendix: 'EnhancedSelfAbot.zip' library header and source file  
(please download EnhancedSelfAbot.cpp file for review). 

#ifndef ENHANCEDSELFABOT_H 
#define ENHANCEDSELFABOT_H 
 
#include "SelfAbot.h" // Include the base class header 
#include "Arduino.h" 
#include <Servo.h>  
 
struct Detection { 
int angle; 
unsigned int distance; 
}; 
 
class EnhancedSelfAbot : public SelfAbot { 
public: 
EnhancedSelfAbot(); 
EnhancedSelfAbot(byte servoLeftPin, byte servoRightPin); 
EnhancedSelfAbot(unsigned int maxDistance, unsigned int safeDistance, int angularRange); 
 
 static const int MAX_DETECTIONS = 40; 
 
 void resetDeviationFactor(); 
 float getDeviationFactor() const; 
 void setDeviationFactor(float deviationFactor); 
 void calibratedeviationFactor(float deviatedistance); 
  
 void driveStraight(int leftSpeed, int rightSpeed); 
void gradualServoSpeed(int targetLeftSpeed, int targetRightSpeed); 
void lightFollowing(unsigned long leftrcTime, unsigned long rightrcTime); 
void irNavigationdriving(int irLeft, int irRight); 
 
void rotateAbot(int angle); 
void calibrateRotation(int duration, bool clockwise); 
// Setters 
void setAngleFactorCW(float angleFactorCW); 
void setAngleFactorCCW(float angleFactorCCW); 
 
// Getters 
float getAngleFactorCW() const; 
float getAngleFactorCCW() const; 
void setUltrasonicSensorPin(byte triggerPin, byte echoPin); 
int calculateDistance(); 
void ultrasonicRadarData(); 
void detectAndProcessSafeArea(); 
bool scanAndProcessAngle(int angle, bool isDescending); 
int findSafeAreaCenterAngle(bool isDescending); 
void setTravelDirection(int angle); 
private: 
 float _deviationFactor; 
 float _setanglefactorCW, _setanglefactorCCW; 
 int _currentLeftSpeed; // Current speed for left servo as a class member 
int _currentRightSpeed; // Current speed for right servo as a class member 
Detection _detections[MAX_DETECTIONS]; 
int _detectionCount; 
int _notDetectedAngularRange; 
byte _triggerPin, _echoPin; 
unsigned int _maxDistance;  
unsigned int _safeDistance;  
}; 
 
#endif // ENHANCEDSELFABOT_H 

 



Chapter 9 Advanced Movement and Control of the Robot 
 
9.1 Implementing Advanced Functions of Wireless Robots 
9.2 Managing Unanticipated Situations During Robot Operation 

 
 

 
 
 
 
Adding wireless capabilities to an Arduino robot significantly enhances its functionality and applications. 
Let's examine why wireless capabilities are beneficial and the advantages they offer. 
 
(1) Increased Mobility and Operational Range: 
Unlimited Movement: Wireless communication frees the robot from the constraints of physical wires, 
enabling unrestricted movement. This is particularly important for tasks related to exploration, 
navigation, or interaction in various environments. 
Extended Operating Range: Robots can operate at distances beyond the reach of wires, expanding the 
scope of projects and applications. 
 
(2) Remote Monitoring and Control: 
Real-time Data: Wireless communication allows for the transmission of real-time data. This means 
sensor readings, robot status, or environmental conditions can be monitored from remote locations. 
Remote Control: Commands can be sent to the robot via remote workstations, smartphones, or the 
internet, allowing for remote control and intervention when needed. 
 
(3) Scalability and Network Integration: 
Easy Expansion: Wireless systems are easier to expand than wired systems. Adding more robots or 
sensors to the network doesn't require complex wiring. They just need to be configured to communicate 
wirelessly with existing systems. 
Integration into Large Systems: Wireless robots can be integrated into large networks, including the 
Internet of Things (IoT), interacting with other smart devices, cloud-based services, or data analysis 



platforms. Arduino supports various wireless communication protocols such as Wi-Fi, Bluetooth, Zigbee 
(XBee), LoRa, and NFC, each offering unique features suitable for different applications. 
 
(4) Enhanced Capabilities through Collaboration: 
Swarm Robotics: Wireless communication allows multiple robots to work together in harmonious groups 
or swarms. Such collaboration can lead to complex group behaviors and efficiencies in tasks like area 
mapping, search and rescue, or collective object transportation. 
Data Sharing: Robots can share sensor data or computational results with each other, making decisions 
based on more information and enabling adaptive behaviors. Wireless systems are essential for real-
time data collection and control in applications such as environmental monitoring, smart homes, or 
industrial automation. 
 
(5) Flexibility and Adaptability: 
Rapid Deployment: Wireless robots can be quickly deployed in various environments without the need 
for extensive infrastructure. 
Adaptation to the Environment: Wireless robots can adjust their operations based on environmental or 
central control system feedback, making them suitable for dynamic or unpredictable conditions. 
 
(6) Enhanced User Interaction: 
User-friendly Interfaces: Wireless communication allows for the use of user-friendly interfaces on 
devices like smartphones, tablets, and computers to control the robot. 
Educational and Entertainment Value: Wireless robots have great potential in education and 
entertainment, enabling interactive and participatory activities such as robot competitions, interactive 
art installations, or educational demonstrations. 
 
Wireless communication opens up various possibilities but requires consideration of factors such as 
communication range, battery life, wireless protocol security, and potential interference from other 
wireless devices. 
 
 
9.1 Implementing Advanced Features in Wireless Robots 
 
The 'neo-Arduino robot car' product used in this book is designed with hardware options for wireless 
communication. To adopt wireless functionality, components for cellular, Bluetooth, XBee/Zigbee, Wi-
Fi communications can be easily mounted on the Arduino robot's slot, and hardware toggle switches 
can be used to easily create wireless communication conditions. The types of wireless antennas 
compatible with the 'neo-Arduino robot car' product, detailed code writing methods, and the use of 
toggle switches can be referred to in the provided materials. 
 
 

 
 

Figure 9.1: Types of XBee pin antennas to attach to the Arduino robot (abot) 
 

Especially, XBee communication is well-known for short-range 1:N communications. Although the 
examples use XBee Series 1 antennas, XBee Series 3 has been released, offering improved 
communication performance. Future discussions may cover short-range wireless communication 
methods. 
 
Using the toggle switch on the Arduino robot 'Fribee EDU' board allows for the selection between USB 
communication and wireless communication for serial communication via Tx/Rx pins (0, 1), though they 
cannot be used simultaneously. 
 



 
Figure 9.2: Toggle (DIP) switches for H/W serial communication using the Fribee board  

 
 
The easiest method is to upload the code via USB communication, check the serial data values on the 
screen, and then switch the toggle to wireless communication, ensuring the same serial data values 
are transmitted wirelessly (initial settings and conditions for the antenna must be prepared in advance). 
 
The choice between communicating via USB or wirelessly depends on the position of the toggle switch, 
as shown in figure 9.2. 
 
There are two methods for serial communication with wireless on an Arduino (or Arduino-compatible 
Fribee) board: using Fribee's hardware serial and software serial. Let's examine the differences 
between the two. 
 
Hardware Serial (Using Tx/Rx pins 0/1): 
Advantages: Hardware serial communication is generally more stable and can handle higher 
transmission speeds than software serial, as the hardware is specifically designed for serial 
communication. With the hardware handling serial communication, CPU overhead is reduced, 
benefiting other processing tasks. Hardware serial also manages interrupts more effectively, allowing 
for smoother multitasking. 
Disadvantages: Using hardware serial (pins 0 and 1 of Arduino) means they cannot be used for general 
I/O, and especially during code upload or serial monitoring, it's necessary to switch to USB 
communication. Additionally, there's a potential waste of cycles as the CPU waits for the transmission 
to complete if not managed properly. 
 
Software Serial (Using pins other than 0/1 for Tx/Rx): 
Advantages: Provides flexibility to use all digital pins for serial communication, leaving hardware serial 
pins free for other tasks or USB communication. This is useful for creating multiple serial connections 
on boards with only one hardware serial port. 
Disadvantages: Software serial may not handle high transmission speeds as reliably as hardware 
serial, especially on less powerful microcontrollers. It introduces more CPU overhead as the CPU 
emulates serial communication, which can disrupt important timing or processing tasks. Additionally, 
without dedicated hardware buffering, it's more prone to buffer overrun issues. 
 
Considerations for Wireless Communication: 
(1) Interference and Noise: Wireless communication is susceptible to interference and noise, which can 
be more problematic in software serial due to lower tolerance for timing disruptions. 
 
(2) Power Consumption: Depending on the method of wireless communication, power consumption can 
be a critical factor, affecting the choice between hardware and software serial. Software serial might 
require more CPU activity during communication, increasing power consumption. 
 
(3) Complexity: Implementing wireless communication adds complexity, especially in ensuring reliable 
data transmission over a potentially unreliable medium. This can influence the choice between 
hardware and software serial based on specific application requirements such as error correction or 



buffer management. 
 
Additional considerations for wireless communication include setting up communication capabilities on 
the counterpart device (PC, smartphone, or another Arduino robot), preparing antennas with initial and 
condition settings, and possibly developing apps for smartphone communication. 
 
In situations where many students begin wireless communication experiments in the same space, 
managing unique wireless antenna IDs might be necessary. 
 
The following is an example code for 'hardware serial' communication on an Arduino, allowing for 
data transmission via keyboard input to the Arduino or data transmission from the Arduino to the 
computer screen while connected via USB cable. 
 

void setup() { 
Serial.begin(9600); 

} 
 
void loop() { 

if (Serial.available() > 0) { 
// Read the incoming byte: 
char incomingByte = Serial.read(); 

 
// Say what you got: 
Serial.print("I received: "); 
Serial.println(incomingByte, DEC); 

} 
} 

 
 
The example code for 'Software Serial' communication for the Arduino robot is as follows. 
 

#include <SoftwareSerial.h> 
// RX and TX pins for the software serial 
int rxPin = 10; 
int txPin = 11; 
// Initialize the software serial port 
SoftwareSerial mySerial(rxPin, txPin); 
 
void setup() { 

// Open the software serial port at 9600 bps 
mySerial.begin(9600); 
// Start the hardware serial port for debugging 
Serial.begin(9600); 

} 
void loop() { 

// Check if data is available to read 
if (mySerial.available()) { 

char inChar = (char)mySerial.read(); 
Serial.print("Received: "); 
Serial.println(inChar); 

} 
// Send a message every second 
static unsigned long lastSendTime = millis(); 
if (millis() - lastSendTime > 1000) { 

mySerial.println("Hello from Arduino!"); 
lastSendTime = millis(); 

} 
} 

 



9.1.1 Displaying Objects Detected with Infrared Sensor on Radar Output Screen 
This practice screen reproduces the "8.2.7 Ultrasonic Sensor Radar Screen Output" practice wirelessly. 
We used the “Ex8.9_enhanced_ultrasonic_radar_scan.ino” code without modification and switched the 
toggle (DIP) switch in the opposite direction to utilize the hardware serial port. 
 
 

 
 

Figure 9.3: Outputting Ultrasonic Sensor Data to Radar Screen Wirelessly 
 
In most microcontroller environments, including Arduino, we write codes connected through wired USB 
serial, check data on the output screen, and often think we need to add or change codes to use software 
serial for wireless environment conversion. Then, there's a need to test the changed code again. 
 
Using hardware serial means the output screen check results in the USB serial environment become 
the final results. 
 
To configure Arduino's software serial, you connect Tx/Rx pins for wireless data transmission to 
other numbers excluding the existing hardware serial numbers 0 and 1 with jumper wires to configure 
software serial. To configure Arduino's hardware serial, even if not equipped with a toggle (DIP) switch 
like the Fribee board, when you choose the pin numbers for Tx/Rx for wireless communication with 
jumper wires to use 0 and 1, it means you are using hardware serial. 
 
Using hardware serial, as introduced in this practice, means you can easily set up a wireless 
communication environment with little to no modification of existing codes. 
The antenna used in Figure 9.3 for wireless communication is the original XBee Series 1 antenna. 
Series 1 antennas have been discontinued, and Series 3 products have been released, offering superior 
performance for IOT construction. 
 
We won't delve deeper here, but note that setting up wireless communication involves more than just 
attaching an antenna to the robot. Especially, tasks like setting up a mesh network require configuring 
antennas for end nodes, routers, and coordinators, among others. 
 
More examples of controlling robots wirelessly will be introduced later. 
 
 
9.2 Managing Unexpected Situations During Robot Operation 
 
Managing unexpected situations during Arduino robot operation is especially important for beginners. 
Robots often interact with dynamic environments and can behave unpredictably. Here's a summary of 
managing unexpected situations for beginners in eight points: 
 
(1) Understanding the Robot and Its Environment 
Understand the Robot: Know how the robot should behave under normal conditions. Be aware of the 
robot's capabilities and limitations. 



Be Aware of the Environment: Know the environment where the robot operates. Various floors, 
obstacles, lighting conditions, and even weather can affect performance. 
 
(2) Programming for Safety and Error Handling 
Safe Defaults: Program the robot to stop or enter a safe state when encountering unexpected situations. 
Error Handling: Implement error handling in your code. For example, ensure the robot reacts safely if a 
sensor fails to read. 
Timeouts: Use timeouts in your code so that if expected events don't occur within a specified time, the 
robot can perform default actions. 
 
(3) Validating Sensor Data 
Check Sensor Readings: Continuously monitor sensor readings to detect anomalies. For example, treat 
sudden '0' or maximum values from a distance sensor as potential errors. 
Duplicate Sensors: Use redundant sensors for critical measurements. This way, if one sensor fails, you 
can rely on another. 
 
(4) Power Management 
Monitor Battery Levels: Ensure the robot can detect low battery and react appropriately, such as 
returning to a home base or shutting down non-essential functions. 
Voltage Regulation: Ensure the power supply is stable. Voltage fluctuations can cause unpredictable 
behavior. 
 
(5) Mechanical Safety Measures 
Physical Limits: Implement physical limits, like bumpers, to prevent damage during collisions. 
Emergency Stop: Have a way to immediately stop the robot manually to halt its operation when 
necessary. 
 
(6) Testing and Debugging 
Thorough Testing: Test the robot in a controlled environment first, then gradually increase the 
complexity of tasks. 
Debugging: Learn how to use tools that help debug Arduino code. The serial monitor is a great tool for 
obtaining real-time feedback from the robot. 
 
(7) Handling External Interference 
Manage Interference: Be aware of electromagnetic interference (EMI) or interference from other 
wireless devices. Shielding or changing frequencies can help resolve issues. 
 
(8) Learning and Iterative Development 
Continuous Learning: Use unexpected events as learning opportunities. Use these experiences to 
improve the robot's design and code. 
Iterative Development: Develop the robot iteratively. Start with simple tasks and add complexity as you 
gain experience and confidence. 
 
Suggestions for Exception Handling in Arduino Robots 
Exception handling is a programming concept used to manage errors and abnormal conditions that 
occur during program execution. However, it's important to note that in the context of Arduino and other 
embedded systems, traditional exception handling seen in higher-level programming languages (such 
as try-catch blocks in C++ or Java) is often not used or not available. This is mainly due to the limited 
memory and processing resources of microcontrollers. 
 
The Arduino platform typically incorporates a simplified version of C++ programming. While standard 
C++ supports exception handling, Arduino programming generally does not use this feature. Instead, 
Arduino programmers employ alternative methods to deal with errors and unexpected situations. Below 
is a beginner-friendly explanation of how to handle exceptions and errors in Arduino-based robots. 
 
(1) Checking for Error Conditions 
Instead of relying on exceptions, you can explicitly check for potential error conditions. For example, if 
a sensor fails or provides incorrect readings, you can write code to verify that the sensor values are 
within a reasonable range. 



 
int sensorValue = analogRead(sensorPin); 
if (sensorValue < MIN_VALUE || sensorValue > MAX_VALUE) { 

// Handle error: maybe set an error flag, try to read sensor again, etc. 
} 

 
(2) Using Return Values and Error Codes 
Functions can return special values or error codes to indicate that a problem has occurred. The main 
program must check these return values and decide what action to take. 
 

int result = performTask(); 
if (result == ERROR_CODE) { 

// Handle the error 
} 

 
(3) Failsafe States 
Design your robot to enter a 'safe' state if a problem occurs. For example, if there's an error with the 
motor driver, the robot should stop all movements to prevent damage or unsafe behavior. 
 
(4) Timeout Mechanisms 
Implement timeout mechanisms in your code, especially when dealing with communication protocols or 
waiting for events. If the expected event doesn't occur within a specific time frame, assume an error 
has occurred and handle accordingly. 
 

unsigned long startTime = millis(); 
while (!eventOccurred()) { 

if (millis() - startTime > TIMEOUT_DURATION) { 
// Handle timeout 
break; 

} 
} 

 
(5) Watchdog Timer 
Some microcontrollers, including Arduino boards, have a feature called a watchdog timer. It's a 
hardware timer that resets the system if the program hangs or enters an infinite loop. 
 
(6) Debugging Output 
Use serial communication to send debugging information from the Arduino to a computer. This helps 
you understand what's happening in the program and identify where and when problems occur. 
 

Serial.println("Starting task..."); 
// Perform some task 
Serial.println("Task completed."); 

 
In summary, traditional exception handling using Try-Catch blocks is generally not used in Arduino 
programming, but there are several other strategies you can employ to handle errors and unexpected 
situations. These include checking for error conditions, using return values and error codes, designing 
failsafe states, implementing timeouts, using watchdog timers, and relying on debugging output. 
 
  



Appendix 
 
Processing source code for ultrasonic radar imaging. 

/* 
Radar Screen Visualisation for HC-SR04 
Maps out an area of what the HC-SR04 sees from a top down view. 
Takes and displays 2 readings, one left to right and one right to left. 
Displays an average of the 2 readings 
Displays motion alert if there is a large difference between the 2 values. 
*/ 
import processing.serial.*; // import serial library 
Serial arduinoport; // declare a serial port 
float x, y; // variable to store x and y co-ordinates for vertices  
int radius = 350; // set the radius of objects 
int w = 300; // set an arbitary width value 
int degree = 0; // servo position in degrees 
int value = 0; // value from sensor 
int motion = 0; // value to store which way the servo is panning 
int[] newValue = new int[181]; // create an array to store each new sensor value for each servo position 
int[] oldValue = new int[181]; // create an array to store the previous values. 
PFont myFont; // setup fonts in Processing 
int radarDist = 0; // set value to configure Radar distance labels 
int firstRun = 0; // value to ignore triggering motion on the first 2 servo sweeps 
/* create background and serial buffer */ 
void setup(){ 
// setup the background size, colour and font. 
size(1204, 650); 
background (0); // 0 = black 
myFont = createFont("verdana", 12); 
textFont(myFont); 
// setup the serial port and buffer 
arduinoport = new Serial(this, "COM4", 9600); 
} 
 
/* draw the screen */ 
void draw(){ 
fill(0); // set the following shapes to be black 
noStroke(); // set the following shapes to have no outline 
ellipse(radius, radius, 750, 750); // draw a circle with a width/ height = 750 with its center position (x and y) set by the 
radius 
rectMode(CENTER); // set the following rectangle to be drawn around its center 
rect(350,402,800,100); // draw rectangle (x, y, width, height) 
if (degree &gt;= 179) { // if at the far right then set motion = 1/ true we're about to go right to left 
motion = 1; // this changes the animation to run right to left 
} 
if (degree &lt;= 1) { // if servo at 0 degrees then we&#039;re about to go left to right 
motion = 0; // this sets the animation to run left to right 
} 
/* setup the radar sweep */ 
/*  
We use trigonmetry to create points around a circle. 
So the radius plus the cosine of the servo position converted to radians 
Since radians 0 start at 90 degrees we add 180 to make it start from the left 
Adding +1 (i) each time through the loops to move 1 degree matching the one degree of servo movement 
cos is for the x left to right value and sin calculates the y value 
since its a circle we plot our lines and vertices around the start point for everything will always be the center. 
*/ 
strokeWeight(7); // set the thickness of the lines 
if (motion == 0) { // if going left to right 
for (int i = 0; i = 0; i--) { // draw 20 lines with fading colour 
stroke(0,200-(10*i), 0); // using standard RGB values, each between 0 and 255 
line(radius, radius, radius + cos(radians(degree+(180+i)))*w, radius + sin(radians(degree+(180+i)))*w); 
} 
} 
 

 



/* Setup the shapes made from the sensor values */ 
noStroke(); // no outline 
/* first sweep */ 
fill(0,50,0); // set the fill colour of the shape (Red, Green, Blue) 
beginShape(); // start drawing shape 
for (int i = 0; i &lt; 180; i++) { // for each degree in the array 
x = radius + cos(radians((180+i)))*((oldValue[i])); // create x coordinate 
y = radius + sin(radians((180+i)))*((oldValue[i])); // create y coordinate 
vertex(x, y); // plot vertices 
} 
endShape(); // end shape 
/* second sweep */ 
fill(0,110,0); 
beginShape(); 
for (int i = 0; i &lt; 180; i++) { 
x = radius + cos(radians((180+i)))*(newValue[i]); 
y = radius + sin(radians((180+i)))*(newValue[i]); 
vertex(x, y); 
} 
endShape(); 
/* average */ 
fill(0,170,0); 
beginShape(); 
for (int i = 0; i = 360) { 
stroke(150,0,0); 
strokeWeight(1); 
noFill(); 
for (int i = 0; i 35 || newValue[i] - oldValue[i] &gt; 35) { 
x = radius + cos(radians((180+i)))*(newValue[i]); 
y = radius + sin(radians((180+i)))*(newValue[i]); 
ellipse(x, y, 10, 10);  
} 
} 
} 
/* set the radar distance rings and out put their values, 50, 100, 150 etc.. */ 
for (int i = 0; i &lt;=6; i++){ 
noFill(); 
strokeWeight(1); 
stroke(0, 255-(30*i), 0); 
ellipse(radius, radius, (100*i), (100*i));  
fill(0, 100, 0); 
noStroke(); 
text(Integer.toString(radarDist+50), 380, (305-radarDist), 50, 50); 
radarDist+=50; 
} 
radarDist = 0; 
/* draw the grid lines on the radar every 30 degrees and write their values 180, 210, 240 etc.. 
*/ 
for (int i = 0; i = 300) { 
text(Integer.toString(180+(30*i)), (radius+10) + cos(radians(180+(30*i)))*(w+10), (radius+10) 
+ sin(radians(180+(30*i)))*(w+10), 25,50); 
} else { 
text(Integer.toString(180+(30*i)), radius + cos(radians(180+(30*i)))*w, radius + 
sin(radians(180+(30*i)))*w, 60,40); 
} 
} 
 



/* Write information text and values. */ 
noStroke(); 
fill(0); 
rect(350,402,800,100); 
fill(0, 100, 0); 
text("Degrees: "+Integer.toString(degree), 100, 380, 100, 50); // use Integet.toString to convert 
numeric to string as text() only outputs strings 
text("Distance: "+Integer.toString(value), 100, 400, 100, 50); // text(string, x, y, width, height) 
text("Radar screen code ", 540, 380, 250, 50); 
fill(0); 
rect(70,60,150,100); 
fill(0, 100, 0);  
text("Screen Key:", 100, 50, 150, 50); 
fill(0,50,0); 
rect(30,53,10,10); 
text("First sweep", 115, 70, 150, 50); 
fill(0,110,0); 
rect(30,73,10,10); 
text("Second sweep", 115, 90, 150, 50); 
fill(0,170,0); 
rect(30,93,10,10); 
text("Average", 115, 110, 150, 50); 
noFill(); 
stroke(150,0,0); 
strokeWeight(1); 
ellipse(29, 113, 10, 10);  
fill(150,0,0); 
text("Motion", 115, 130, 150, 50); 
fill(0,450,500); 
text("Developed by: SUPERKITZ ", 350, 400, 150, 50); 
text("www.superkitz.com ", 400, 430, 150, 50); 
fill(0,110,0); 
} 
/* get values from serial port */ 
void serialEvent (Serial arduinoport) { 
String xString = arduinoport.readStringUntil('\n'); // read the serial port until a new line 
if (xString != null) { // if theres data in between the new lines 
xString = trim(xString); // get rid of any whitespace just in case 
String getX = xString.substring(1, xString.indexOf("V")); // get the value of the servo position 
String getV = xString.substring(xString.indexOf("V")+1, xString.length()); // get the value of the 
sensor reading 
degree = Integer.parseInt(getX); // set the values to variables 
value = Integer.parseInt(getV); 
oldValue[degree] = newValue[degree]; // store the values in the arrays. 
newValue[degree] = value;  
/* sets a counter to allow for the first 2 sweeps of the servo */ 
firstRun++; 
if (firstRun &gt; 360) { 
firstRun = 360; // keep the value at 360  
} 
} 
} 
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